
P-Machine Specification Version 4
 Date: 2021-01-11

1

1. Introduction
The P-Machine is a virtual machine usually implemented using an interpreter. The difference
between the P-Machine and most other computer architectures is the P-Machine relies heavily
on a stack. The P-Machine also supports additional data types not ordinarily available on
conventional computers.

The P-Machine defines storage for registers, data, and instructions as shown in Figure 1.
Registers, data, and instructions are discussed in succeeding sections.

PC: Program Counter

SP: Stack Pointer

MP: Mark Pointer

NP: New Pointer

EP: Extreme Pointer

rstore

dstore

contstants

dynamic memory

stack

Figure 1. (a) Register Store Figure 1. (b) Data Store

istore

opcode operand 1 operand 2

Figure 1 (c) Instruction Store
Figure 1. P-Machine Memory

2. Registers
The P-Machine has five registers: they are:
1. PC, the program counter
2. SP, the stack pointer
3. MP, the mark pointer
4. NP, the new pointer
5. EP, the extreme stack pointer

2.1. Program Counter Register (PC)
The program counter register contains the index of the current instruction being executed.
Instructions are stored in array istore. Each element of the array occupies 32 bits and contains
three fields, an operation code and two operands. The format of P-Machine instructions is shown
in Figure 2. P-Machine programs are limited to 32768 instructions. Instructions are stored in
array istore starting with element zero.

opcode operand 1 operand 2

8 8 16

0 7 8 15 16 31
Figure 2. P-Code Instruction Format

The program counter is a 32-bit integer.

P-Machine Specification Version 4
 Date: 2021-01-11

2

2.2. Stack Pointer (SP)
The stack pointer register contains the index of the element on top of the stack. Note that the
stack is entirely contained in the data store. The data store is entirely composed of elements,
each occupying eight (8) bytes. The stack pointer is an index of array dstore.

dstore

dynamic memory

stack frame

stack frame

stack frame

NP

SP

Data Store

Figure 3. Anatomy of the Data Store

The anatomy of the data store is shown in Figure 3. The stack and heap grow toward each other
as a P-Code program executes. Each time a procedure or function is called, another stack frame
is allocated on the stack. As procedures and functions return to their callers, stack frames are
removed from the stack.
The stack pointer marks the maximum extent of the stack.

The stack pointer register is a 32-bit integer.

2.3. New Pointer (NP)
The new pointer register marks the maximum extent of the heap. The new pointer register is an
index of array dstore. Each time standard function new is called, storage for data referenced by
the pointer returned by function new is allocated from the heap and the new pointer is moved
toward the stack.
If the value of the stack pointer exceeds that of the new pointer the stack and heap have collided.
This situation is an error and the P-Machine terminates the P-Code program.

2.4. Mark Pointer (MP)
The mark pointer register marks the beginning of a stack frame and it, too, contains an index of
array dstore. The anatomy of a stack frame is shown in Figure 4. A stack frame is divided into
sections, the mark, parameters, locals, and computation stack. The mark pointer register contains
the index of the return value in the stack mark.
The mark pointer register is a 32-bit integer.

P-Machine Specification Version 4
 Date: 2021-01-11

3

computation stack

return address (ra)

old extreme pointer (ep)

dynamic link (dl)

static link (sl)

return value (rv)

parameters
(if present)

locals
(if present)

SP

EP

MP

stack
mark

0

1

2

3

4

5

Figure 4. Anatomy of a Stack Frame

2.5. Extreme Pointer (EP)
The extreme pointer register marks maximum extent of the frame. The value of the extreme
pointer relative to the mark pointer is the size of the stack mark, parameters, local variables, and
largest computation stack. The stack will not grow beyond the value stored in the extreme pointer
during the execution of a function or procedure.

3. Stack Frame
The anatomy of a stack frame is shown in Figure 4. A stack frame is allocated each time a
procedure or function is called and removed when the subprogram returns. Each region of the
frame is discussed below.

3.1. Return Value (rv)
The return value is storage reserved for the return value of a function: the value returned by a
function is stored here. The return value is a single element of array dstore and occupies eight (8)
bytes. Eight bytes are sufficient to store any of the P-Machine types.

3.2. Static Link (sl)
The static link references the frame on the stack associated with the immediately enclosing
procedure or function. For example, if procedure A encloses procedure B, then the static link in
the frame for procedure B references the frame for procedure A.

The static link is an index into array dstore. The static link occupies a single element of array
dstore.

P-Machine Specification Version 4
 Date: 2021-01-11

4

program main;
 var j:integer;
 procedure p;
 var i:integer;
 procedure q;
 begin
 if i>0 then
 begin
 i:=i-1;
 j:=j+1;
 q
 end
 end{q};
 begin{p}
 i:=2;
 q;
 end{p};
begin{main}
 j:=0;
 p
end{main}.

i

j

rv

rv

rv

rv

rv

sl

sl

sl

sl

sl

dl

dl

dl

dl

dl

ep

ep

ep

ep

ep

ra

ra

ra

ra

ra

procedure main
stack frame

procedure p
stack frame

First invocation
procedure q
stack frame

Second invocation
procedure q
stack frame

Third invocation
procedure q
stack frame

dynamic
links

static
links

Figure 5. Program main Figure 6. Static and Dynamic Links

Consider program main in Figure 5. The diagram in Figure 6 is a snapshot of the stack on the third
(recursive) invocation of procedure q. Note the static links from all three invocations of procedure
q reference the frame associated with the invocation of procedure p. Procedure p encloses
procedure q. Non local references to variable i allocated in procedure p are accessed via the static
link in the frame for procedure q.
The static link references the frame of the enclosing procedure. Procedure p encloses procedure
q and static links in all three invocations of procedure q reference procedure p's frame.

3.3. Dynamic Link (dl)
The dynamic link references the caller's frame. For example, if procedure F called procedure G,
then the dynamic link in procedure G's frame references the frame of procedure F.

The dynamic link is an index of array dstore. The dynamic link occupies a single element of array
dstore.
Dynamic links illustrated in Figure 6 refer to the calling subprogram. Program main is called by
the operating system so its dynamic link is not shown. Only procedures and functions of program
main have valid dynamic links.

The dynamic link in procedure p's frame refers to program main.

The dynamic link in the first invocation of procedure q refers to the frame allocated for procedure
p. Procedure p called procedure q.

Dynamic links in subsequent invocations of procedure q refer to the frame allocated for the
previous invocation of procedure q. Procedure q is recursive: it calls itself.

P-Machine Specification Version 4
 Date: 2021-01-11

5

3.4. Old Extreme Pointer (ep)
The old extreme pointer contains the value of the extreme pointer register. The value of the
extreme pointer register is saved in the stack mark when a procedure or function is called and
restored when the subprogram returns.

The old extreme pointer occupies a single element of array dstore.

3.5. Return Address (ra)
The return address contains the address of the instruction following the procedure call in the
calling procedure. The return address is the next instruction to execute after the subprogram
returns. The return address is an index of array istore. The return address occupies a single
element of array dstore.

3.6. Parameters
Parameters are stored immediately above the stack mark. Parameters are optional. Procedures
or functions without parameters require no storage for such.

The first parameter is located five elements from the mark pointer.
Parameters having type Boolean, character, integer, real, or set occupy one element in array
dstore.

program params;
 var j:integer;
 procedure addparams

(var i:integer);
begin{addparams}
 i:=i+1
end{addparms};
begin{params}
 j:=1;
 addparams(j)
end{params}.

Figure 7. Program params

iaddr P-Code Operand 1 Operand 2 Comment
0 ent sp 5 Start procedure addparams

Allocate storage for parameter i and the stack
mark

1 ent ep 3 Reserve 3 elements for the computation stack
2 lva 0 5 Load the value of parameter i: it is an address.

Parameter i will be used as the target in the store
indirect instruction in element 7 of array iaddr.

3 lva 0 5 Load the value of parameter i, an address, in
preparation to obtain the value of variable i.

4 ind i Load indirect. Obtain the value of variable i
5 ldc i 1 Load an integer constant 1.
6 adi Add the two integers on top of the stack.

P-Machine Specification Version 4
 Date: 2021-01-11

6

iaddr P-Code Operand 1 Operand 2 Comment
7 sti i Assign the sum to the location whose address is

in parameter i. Assign the sum to variable j.
8 rtn p Return to the caller
9 ent sp 5 Start program params

Allocate storage for variable j and the stack mark
10 ent ep 6 Reserve 6 elements for the computation stack
11 lda 0 5 Load the address of variable j
12 ldc i 1 Load an integer constant 1.
13 sti i Assign the integer constant to variable j.
14 mst 0 Allocate storage for procedure addparams’ stack

mark
15 lda 0 5 Load the address of variable j just above the mark

in the parameters section, passing variable j by
reference.

16 cup 1 0 Call procedure addparams, having one
argument.

17 rtn p Return to the caller
18 mst 0 Execution starts here. Create program params'

stack mark.
19 cup 0 9 Call program params
20 stp Stop

Figure 8. Annotated P-Code listing of program params

Consider program params in Figure 7 and the annotated P-Code listing of program params in
Figure 8. Instructions for procedure addparams occupy elements 0 through 8 of array istore. Code
for program main is stored in elements 9 through 17 of array istore. The program prologue, that
creates the stack mark for program main, is stored in elements 18 and 19 of array istore.

Note that storage for one parameter is allocated by the entry (ent) instruction located in element
0 of array istore. The address of variable j is passed to procedure addparams by the instruction in
element 15 of array istore.

3.7. Locals
Storage for variables local to the subprogram is allocated above parameters. Temporary variables
allocated by the compiler may also be allocated in the local storage section. Procedures or
functions without local variables require no storage for locals.

Consider program locals in Figure 9 and the corresponding listing of P-Code instructions in Figure
10. Variable i is local to procedure addlocal. Storage for variable i is allocated by the entry (ent)
instruction in element 0 of array istore. Instructions stored in elements 0 through 7 implement
procedure addlocal. Program locals is stored in elements 8 through 12 of array istore and the
program prologue that creates the stack mark for program locals is stored in elements 13 and 14
of array istore.

P-Machine Specification Version 4
 Date: 2021-01-11

7

program locals;
 procedure addlocal;
 var i:integer;
 begin{addlocal}
 i:=i+1
 end{addlocal};
begin{locals}
 addlocal
end{locals}.

Figure 9. Program locals

iaddr P-Code Operand 1 Operand 2 Comment
0 ent sp 5 Start procedure addlocal

Allocate storage for variable i and the stack mark
1 ent ep 3 Reserve 3 elements for the computation stack
2 lda 0 5 Load the address of variable i in preparation to

store a value.
3 lvi 0 5 Load the value of variable i
4 ldc i 1 Load an integer constant 1.
5 adi Add the two integers on top of the stack.
6 sti i Assign the sum to variable i.
7 rtn p Return to the caller
8 ent sp 4 Start program locals

Allocate storage for the stack mark
9 ent ep 5 Reserve 5 elements for the computation stack

10 mst 0 Allocate storage for procedure addlocals' stack
mark

11 cup 0 0 Call procedure addlocal.
12 rtn p Return to the caller
13 mst 0 Execution starts here. Create program main's

stack mark.
14 cup 0 8 Call program local
15 stp Stop

Figure 10. Annotated P-Code listing of program locals

3.8. Computation Stack
Storage for the computation stack is allocated in this region. The amount of storage required for
the most complex computation in the subprogram is computed during compilation and used to
determine the number of elements in the computation stack.
The purpose of reserving storage for computation in advance is to improve execution
performance. Every time the stack pointer is incremented, it must be checked against the new
pointer to prevent a collision. The stack cannot grow into the heap. By reserving the entire
storage required for computation in the subprogram prologue, the P-Machine is not required to
check the value of the new pointer every time the stack pointer is incremented. The extreme
pointer delimits the maximum extent of the computation stack.

P-Machine Specification Version 4
 Date: 2021-01-11

8

4. P-Machine register codes
P-Machine registers are assigned numeric codes in Table 1.

Table 1. P-Machine Registers
Register Mnemonic Value (Hex) Description

sp 00 Stack Pointer
ep 01 Extreme Pointer
mp 02 Mark Pointer
pc 03 Program Counter
np 04 New Pointer

5. P-Machine type codes
P-Machine types are assigned numeric codes in Table 2.

Table 2. P-Machine Types
Type Value (Hex) Description

a 00 Address
b 01 Boolean
c 02 Character
i 03 Integer
r 04 Real
s 05 String
t 06 Set
p 07 Procedure
x 08 Any of the above types

6. Instruction mnemonic and standard function codes
P-Machine instructions are assigned numeric codes in tables 3, 7, 9, 11, 13, 15, 17, 19, and 21.
Notes discussing the function of P-Code instructions follow the tables that contain their numeric
codes.

Standard function codes for the call standard procedure (csp) P-Code instruction are found in
table 5.

Table 3. Subprogram Linkage P-Machine Operations
Mnemonic P-Code Operand 1 Operand 2 Operation on

stack
Description

 (hex) Before After
cup 00 argsize iaddr empty empty Call User Procedure
csp 01 stdfunction function specific Call Standard

Procedure
ent 02 register amount empty empty Entry
mst 03 level empty empty Mark Stack
rtn 04 type empty empty Return

P-Machine Specification Version 4
 Date: 2021-01-11

9

Table 4. Subprogram Linkage P-Machine Operation Notes
Operand Symbol Description
argsize argsize specifies the size of the arguments passed to the procedure

called. argsize is specified in elements of array dstore. argsize is an
unsigned integer in the range 0 to 255.

iaddr iaddr is the instruction address that marks the first instruction of the
procedure called. iaddr is an index of array istore. iaddr is an unsigned
integer in the range 0 to 32767.

stdfunction stdfunction is the index of a Pascal standard procedure or function.
Indexes of standard procedures and functions are given in Table 5.

register register is an integer value representing one of two registers, the stack
pointer (sp) or the extreme pointer (ep). When coded as operand 1 of
the entry instruction, sp represents a zero (0) and ep represents a (1).

amount amount is the amount to be added to the value of the mark pointer
register and assigned to the register in operand 1 of the entry
instruction.

Table 4. Subprogram Linkage P-Machine Operation Notes (continued)
Operand Symbol Description
level level specifies which stack frame contains variables not local to the

current subprogram. level specifies the number of static links to
traverse before arriving at that stack frame allocated when the
immediately enclosing procedure was called. level is computed by
adding one to the level of the calling procedure minus the level of the
called procedure.

type type is a P-Machine type. P-Machine types are listed in Table 2.

6.1. Call User Procedure (cup)

Note: Variable p is operand 1 and variable q is operand 2 of a p-code instruction.
1. mp:=sp-(p+4);

The mark pointer is assigned a value relative to the stack pointer, sp. If no
arguments are passed to the subprogram being invoked then the stack pointer
references the location assigned to the return address (ra) in the stack mark. The
mark pointer must reference the position (0) assigned to the return value (rv) in the
stack mark. The relative address of the return value is numerically four (4) positions
less than the return address. Please refer to figure 11.

2. dstore[mp+4].a:=pc;
Assign the return address to its location in the stack mark.

3. pc:=q;
Assign the starting address of the subprogram being called to the program counter,
pc.

P-Machine Specification Version 4
 Date: 2021-01-11

10

return address (ra)

old extreme pointer (ep)

dynamic link (dl)

static link (sl)

return value (rv)

stack
mark

0

1

2

3
4SP

MP

Figure 11. Subprogram invocation with no arguments.

return address (ra)

old extreme pointer (ep)

dynamic link (dl)

static link (sl)

return value (rv)

stack
mark

0

1

2

3
4

SP

MP

argument 1

argument 2

argument p4+p

Figure 12. Subprogram invocation with p arguments.

6.2. Call Standard Procedure (csp)
Call Standard Procedure is used to call standard procedures and functions listed in Table
5.

6.3. Entry (ent)
The Entry operation is used to allocate storage on the current stack frame for local
variables and for the computation stack.

6.4. Mark Stack (mst)
The Mark Stack instruction allocates storage for the stack mark, saves the value of the
old extreme pointer, assigns the value the dynamic link, and computes the value of the
static link.

dstore[sp+2].vm:=base(p); {The static link is set to p minus the level of the called
 subprogram + 1}
dstore[sp+3].vm:=mp; {Assign the value of the dynamic link}
dstore[sp+4].vm:=ep; {Save the value of the old extreme pointer}
sp:=sp+5; {Allocate storage for the stack mark just created.}

Figure 13. Mark Stack implementation

P-Machine Specification Version 4
 Date: 2021-01-11

11

6.5. Return (rtn)
The Return instruction restores the sp, ep, mp, and pc registers.

if p>0 then sp:=mp else sp:=mp-1; {Put the return value on top of the stack if
 if the subprogram was a function}
pc:=store[mp+4].vm; {Assign the pc to the return address}
ep:=store[mp+3].vm; {Restore the extreme pointer}
mp:=store[mp+2].vm; {Restore the mark pointer and deallocate
 the previous stack frame}

Figure 14. Return implementation

Table 5. Standard Functions
Mnemoni

c
Opcode Operation on

stack
Description

 (hex) Before After
rdb 00 (a,f) empty Read Boolean
rdc 01 (a,f) empty Read Character
rdi 02 (a,f) empty Read Integer
rdr 03 (a,f) empty Read Real
rln 04 (f) empty Read Line

wrb 05 (w,b,f) empty Write Boolean
wrc 06 (w,c,f) empty Write Character
wri 07 (w,i,f) empty Write Integer
wre 08 (d,w,r,f) empty Write Real, Exponential Format
wrf 09 (d,w,r,f) empty Write Real, Fixed Format
wrs 0A (a,f) empty Write String, a=address of string
wrt 0B (t,f) empty Write Set
wln 0C (f) empty Write Line
sqt 0D (r) sqrt(r) Square Root
ln 0E (r) ln(r) Natural Logarithm

exp 0F (r) exp(r) Exponentiation

Table 6. Standard Function Notes
Symbol Description
(x1,x2,x3,x4) Operands on the stack are enclosed in parentheses and separated by

commas. The leftmost operand, x1, is on top of the stack. Subsequent
operands, x2, x3, and x4 are on the stack, under x1, in the order listed.
For example, element x4 is fourth from the top of the stack.

(a,f) Operand a represents the address of a variable and operand f
represents the file to be read. For example, standard function rdb
reads a Boolean value, true or false, from file f and stores a zero or a
one, depending on which value was read, into the Boolean value whose
address “a”, is on top of the stack.

(t,f) Set value t is formatted and written to file f.
(w,b,f) Boolean value b is right justified in a field of width w in file f.
(w,c,f) Character value c is right justified in a field of width w in file f.
(w,i,f) Integer value i is right justified in a field of width w in file f.

P-Machine Specification Version 4
 Date: 2021-01-11

12

(d,w,r,f) Real value r is right justified in a field of width w having d fraction digits
in file f.

(r) Operand r is a real value on top of the stack
Table 6. Standard Function Notes (continued)
Symbol Description
sqrt(r) sqrt(r) is the square root of r.

Table 7. Comparison P-Machine Operations
Mnemonic P-Code Operand

1
Operand 2 Operation on

stack
Description

 (hex) Before After
equ 05 type (x1,x2) b Equality comparison,

b:=x2=x1
neq 06 type (x1,x2) b Inequality comparison,

b:=x2<>x1
grt 07 type (x1,x2) b Greater than

comparison, b:=x2>x1
geq 08 type (x1,x2) b Greater than or equal

comparison, b:=x2>=x1
les 09 type (x1,x2) b Less than comparison,

b:=x2<x1
leq 0A type (x1,x2) b Less than or equal

comparison, b:=x2<=x1

Table 8. Comparison P-Machine Operation Notes
Operand Symbol Description
(x1,x2) Operand x1 is on top of the stack and operand x2 is next to the top of

the stack
(x1,x2) Operands x1 and x2 are values having the same type. Comparisons

compare two values having the same type
b The value b is the Boolean result of comparing two values of the same

type
type type is a P-Machine type. P-Machine types are listed in Table 2.

Table 9. Arithmetic P-Machine Operations
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

 (hex) Before After
adi 0B (i1,i2) i3 Integer addition, i3:=i2+i1
sbi 0C (i1,i2) i3 Integer subtraction,

i3:=i2-i1
ngi 0D (i1) i2 Integer sign inversion,

i2:=-i1
mpi 0E (i1,i2) i3 Integer multiplication,

i3:=i2*i1
dvi 0F (i1,i2) i3 Integer division, i3:=i2

div i1

P-Machine Specification Version 4
 Date: 2021-01-11

13

Table 9. Arithmetic P-Machine Operations (continued)
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

mod 10 (i1,i2) i3 Modulo, i3:=i2 mod i1
abi 11 (i1) i2 Integer absolute value,

i2:=|i1 |
sqi 12 (i1) i2 Integer square, i2:=i12

Table 9. Arithmetic P-Machine Operations (continued)
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

inc 13 i-type (x) x+1 Increment
dec 14 i-type (x) x-1 Decrement
adr 15 (r1,r2) r3 Real addition, r3:=r2+r1
sbr 16 (r1,r2) r3 Real subtraction, r3:=r2-

r1
ngr 17 (r1) r2 Real sign inversion, r2:=-

r1
mpr 18 (r1,r2) r3 Real multiplication,

r3:=r2*r1
dvr 19 (r1,r2) r3 Real division, r3:=r2/r1
abr 1A (r1) r2 Real absolute value,

r2:=|r1|
sqr 1B (r1) r2 Real square r2:=r1

2

Table 10. Arithmetic P-Machine Operation Notes
Operand Symbol Description
(i1,i2) i1 is on top of the stack and i2 is next to the top of the stack
(r1,r2) r1 is on top of the stack and r2 is next to the top of the stack
i1, i2, i3 i1, i2, and i3 are integers.
r1, r2, r3 r1, r2, and r3 are real numbers.
i-type Integral type including a-address, b-boolean, c-character, and i-

integer.

Table 11. Boolean P-Machine Operations
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

 (hex) Before After
ior 1C (b1,b2) b3 Inclusive OR, b3:=b2∪b1
and 1D (b1,b2) b3 AND, b3:=b2∩b1
xor 1E (b1,b2) b3 Exclusive OR,

b3:=b2⊕b1
not 1F (b1) b2 Complement, b2:=not

b1

Table 12. Boolean P-Machine Operation Notes
Operand Symbol Descriptions

P-Machine Specification Version 4
 Date: 2021-01-11

14

(b1,b2) b1 is on top of the stack and b2 is next to the top of the stack
b1, b2, b3 b1, b2, and b3 are Boolean values.

Table 13. Set P-Machine Operations
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

 (hex) Before After
inn 20 (t,i) b Set membership,

b:=i∈t
uni 21 (t1,t2) t3 Set union, t3:=t2∪t1
ntr 22 (t1,t2) t3 Set intersection,

t3:=t2∩t1
dif 23 (t1,t2) t3 Set difference,

t3:=t2∩ not t1
cmp 24 (t1) t2 Complement, t2:=not t1
sgs 25 (i) t Generate singleton set

Table 14. Set P-Machine Operation Notes
Operand Symbol Description
(t,i) t is a bit-vector representing a set of 64 elements numbered 0 to 63

from most significant bit to least significant bit. i is an integer value
between 0 and 63. If the ith bit is set, Boolean value b is assigned
true, otherwise it is assigned false.

(t1,t2) t1 is on top of the stack and s2 is next to the top of the stack
t1, t2, t3 t1, t2, and t3 are sets having a maximum of 64 elements.

Table 15. Jump P-Machine Operations
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

 (hex) Before After
ujp 26 iaddr empty empty Unconditional jump
xjp 27 iaddr (i) empty Indexed jump
fjp 28 iaddr (b) empty False jump
tjp 29 iaddr (b) empty True jump

Table 16. Jump P-Machine Operation Notes
Operand Symbol Description
iaddr iaddr is an instruction address in the range 0 to 32767.
(i) i is an integer offset from iaddr. The indexed jump instruction is used

to implement case statements
b b is a Boolean value

P-Machine Specification Version 4
 Date: 2021-01-11

15

Table 17. Conversion P-Machine Operations
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

 (hex) Before After
flt 2A (i) r Float top of stack
flo 2B (x,i) (x,r) Float next to top of

stack
trc 2C (r) i Truncate
rnd 2D (r) i Round
chr 2E (i) c Convert to character
ord 2F (x) i Convert to integer

Table 18. Conversion P-Machine Operation Notes
Operand Symbol Description
i i is an integer value
r r is a real value
(x,i) x is a value of any type on top of the stack and i is an integer value

next to the top of stack.

Table 19. Program Termination P-Machine Operations
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

 (hex) Before After
stp 30 empty empty Stop

Table 20. Program Termination P-Machine Operation Notes
Operand Symbol Description
stp stp is always the last instruction in a P-Machine Program

Table 21. Data Reference P-Machine Operations
Mnemonic P-Code Operand

1
Operand

2
Operation on

stack
Description

 (hex) Before After
lda 31 level offset empty a Load address of data
ldc 32 type cindex empty x Load constant
ldi 33 type (a) x Load indirect
lva 34 level offset empty a Load value (address)
lvb 35 level offset empty b Load value (Boolean)
lvc 36 level offset empty c Load value (character)
lvi 37 level offset empty i Load value (integer)
lvr 38 level offset empty r Load value (real)
lvs 39 level offset empty s Load value (string)
lvt 3A level offset empty t Load value (set)
sti 3B type (x,a) empty Store indirect
ixa 3C stride(q) (a1,i) a2 Compute indexed

address
a2:=q*i+a1

P-Machine Specification Version 4
 Date: 2021-01-11

16

Table 22. Data Reference P-Machine Operation Notes
Operand Symbol Description
level level references the frame in which the value sought is found. When the

value of level is zero, the value sought is in the frame on top of the stack.
When the value of level is one or greater, the value sought is one or
more frames distant in the stack following the static link. For example, if
the value of level was two, the value sought is in that frame that can be
found following the static link twice.

offset offset is the amount added to the mark pointer register to obtain the
desired value. Values are stored in elements of array dstore. Recall that
the mark pointer register always contains a valid index of array dstore.

type type is a P-Machine type. P-Machine types are listed in Table 2.
cindex cindex is a constant index. A P-Machine program contains tables of

integer, real, set, and string constants. If the value of type is i (4), r (5),
s(6) or t(7), the value of the constant is in the associated constant table.
Boolean and character constants are coded in operand 2 directly.

stride stride is the number of words occupied by an element of the array
referenced

	2.3. New Pointer (NP)

