
Programming Languages Project p04.1
CMSC 5023 Pasm Scanner

 1

Project: Employ the Unix utility lex to create a lexical analyzer for the P-Code Assembler.
Reserve words, mnemonics, numeric constants, and other token descriptions are
described later in this document.

Produce a trace file having the suffix “.atrc” and containing a description of every
token encountered in the source file. The contents of a sample trace file are
shown in Figure 3.

Program
Files:

File Description

 makepasm File makepasm contains instructions for program pasm.
Instructions are written for the Unix utility make. Program
pasm is contained in file pasm.

 mkpasm File mkpasm is a Unix script file that removes old file
created in the last creation of executable file pas and
invokes file makepasm to create a new executable file
pasm.

Command
Line:

Project p04.1 can be invoked with zero or one program parameters. The first
program parameter is the input file name. Sample command lines together with
corresponding actions by program pasm are shown below. Boldfaced type
indicates data entered at the keyboard by the user.
$ pasm
Enter the input file name: p00.pasm

$ pasm p00.pcd

Input File: The input file contains a P-Code Assembler program. The input file name must
have the suffix .pcd. Please refer to figure 1 for an example of the format of an
input file.

Output
Files:

A single output file is produced. The output file has the same prefix as the input
source.pcd and the suffix .pcd is replaced by the suffix .atrc. For example, if the
input file was named hello.pcd, the output file would be named hello.atrc.

$ pasm p00.pcd

File p00.atrc is produced as shown in Figure 2.

L00001 ent sp L00002
 ent ep L00003
 rtn p
#define L00002 4
#define L00003 4
 mst 0
 cup 0 L00001
 stp

Figure 1. Example input file p00.pcd.

Programming Languages Project p04.1
CMSC 5023 Pasm Scanner

 2

P-Code Assembler

pasmSource.pcd Source.atrc

Figure 2. P-Code Assembler Block Diagram

Token=(92,LABEL,L00001)
Token=(4,MST_O,ent)
Token=(79,EP_R,sp)
Token=(92,LABEL,L00002)
Token=(4,MST_O,ent)
Token=(80,MP_R,ep)
Token=(92,LABEL,L00003)
Token=(6,EQU_O,rtn)
Token=(91,X_T,p)
Token=(93,DEFINE,#define)
Token=(92,LABEL,L00002)
Token=(94,INTLIT,4)
Token=(93,DEFINE,#define)
Token=(92,LABEL,L00003)
Token=(94,INTLIT,4)
Token=(5,RTN_O,mst)
Token=(94,INTLIT,0)
Token=(2,CSP_O,cup)
Token=(94,INTLIT,0)
Token=(92,LABEL,L00001)
Token=(50,LDA_O,stp)

Figure 3. Example Output file p00.atrc.

Programming Languages Project p04.1
CMSC 5023 Pasm Scanner

 3

Token Code Token Name Pattern Token Code Token Name Pattern
1 CUP_O cup 46 RND_O rnd
2 CSP_O csp 47 CHR_O chr
3 ENT_O ent 48 ORD_O ord
4 MST_O mst 49 STP_O stp
5 RTN_O rtn 50 LDA_O lda
6 EQU_O equ 51 LDC_O ldc
7 NEQ_O neq 52 LDI_O ldi
8 GRT_O grt 53 LVA_O lva
9 GEQ_O geq 54 LVB_O lvb

10 LES_O les 55 LVC_O lvc
11 LEQ_O leq 56 LVI_O lvi
12 ADI_O adi 57 LVR_O lvr
13 SBI_O sbi 58 LVS_O lvs
14 NGI_O ngi 59 LVT_O lvt
15 MPI_O mpi 60 STI_O sti
16 DVI_O dvi 61 IXA_O ixa
17 MOD_O mod 62 RDB_F rdb
18 ABI_O abi 63 RDC_F rdc
19 SQI_O sqi 64 RDI_F rdi
20 INC_O inc 65 RDR_F rdr
21 DEC_O dec 66 RLN_F rln
22 ADR_O adr 67 WRB_F wrb
23 SBR_O sbr 68 WRC_F wrc
24 NGR_O ngr 69 WRI_F wri
25 MPR_O mpr 70 WRE_F wre
26 DVR_O dvr 71 WRF_F wrf
27 ABR_O abr 72 WRS_F wrs
28 SQR_O sqr 73 WRT_F wrt
29 IOR_O ior 74 WLN_F wln
30 AND_O and 75 SQT_F sqt
31 XOR_O xor 76 LN_F ln
32 NOT_O not 77 EXP_F exp
33 INN_O inn 78 SP_R sp
34 UNI_O uni 79 EP_R ep
35 NTR_O ntr 80 MP_R mp
36 DIF_O dif 81 PC_R pc
37 CMP_O cmp 82 NP_R np
38 SGS_O sgs 83 A_T a
39 UJP_O ujp 84 B_T b
40 XJP_O xjp 85 C_T c
41 FJP_O fjp 86 I_T i
42 TJP_O tjp 87 R_T r
43 FLT_O flt 88 S_T s
44 FLO_O flo 89 T_T t
45 TRC_O trc 90 P_T p

Programming Languages Project p04.1
CMSC 5023 Pasm Scanner

 4

Token Code Token Name Pattern Token Code Token Name Pattern
91 X_T x

Token Code Token Name Pattern
92 LABEL A label begins with the capital letter L and is followed by any

number of integer digits. Example: L00001
93 DEFINE #define
94 INTLIT An integer literal is an optional sign followed by one or more

digits.
95 REALIT A real literal – a real number constant – consists of one or

more integer digits, a decimal point, one or more fractional
digits, and an optional exponent. The exponent, if present, is
the letter e, an optional sign, and one or more digits.
Remember, P-Code is case-insensitive so the letter e may be
capitalized.

95 REALIT A real literal – a real number constant – consists of one or
more integer digits and an exponent.

96 CHRLIT A character constant – a single character enclosed between
apostrophes. For example, the character constant, t, appears
in the source as ‘t’. An apostrophe is double so that a single
apostrophe appears as ‘’’’.

97 STRLIT A string constant – two or more characters enclosed between
apostrophes. For example, the string constant banana
appears as ‘banana’. Apostrophes in string constants are
doubled so that the constant don’t appears as ‘don’’t’.

98 ID Identifier – One or more lower case letters
99 ERROR An unrecognized token

	makepasm
	mkpasm
	 stp
	Token=(50,LDA_O,stp)
	A real literal – a real number constant – consists of one or more integer digits, a decimal point, one or more fractional digits, and an optional exponent. The exponent, if present, is the letter e, an optional sign, and one or more digits. Remember, P-Code is case-insensitive so the letter e may be capitalized.

