Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

The purpose of this lecture is to explain how semantic information is obtained and produced
using the lex and yacc tools. To that end, this lecture contains a simple expression calculator.
You can find the calculator here and in folder ~tt/cs5023/lectures/L003.

File Description
mkcalc Creates program calc from source files.
Usage:
$ mkcalc
makecalc | A makefile that directs the make utility to create the executable file calc from
source files.
Usage:
S make -f makecalc
calc.exp Contains function main that initiates program execution
calclex.| File calclex.l contains the specification for the scanner or lexer. To create a

relocatable object, file calclex.I must be first translated by linux utility lex and
then compiled using the C++ compiler.

calclex.h Contains the interface to the lexer.

calcpar.y File calcpar.y contains the specification for the parser or syntax analyzer. To
create a relocatable object, file calcpar.y must first be translated by linux utility
yacc and then compiled using the C++ compiler.

calcpar.h Contains the interface to the parser.

S calc
p=3.14159
r=2.5
=19.6349

Figure 1. Sample Dialog using program calc
Note: Ctrl-D is the end-of-file marker for the keyboard

In this discussion, we focus on yacc directives:

e %union
e %token
e %type

We also discuss the semantic stack record yylval and its interaction with yacc pseudo variables,

SS, 581,52 ...

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

File mkcalc
rm calclex.cpp
rm calcpar.cpp
rm *.0
rm calc
make -f makecalc

Figure 2. File mkcalc
Notes:
1. Files calclex.cpp and calcpar.cpp are created in the process of making executable file
calc. We want to remove both files before we create a new version of the calculator.
2. Likewise, we wish to remove all object files and the executable file, calc, before we
create a new version.
3. The command make -f makecalc creates a new version of the calculator, calc.

File makecalc
H

o

File makecalc creates a calculator as described in Chapter 3 of

Lex & Yacc by Mssers. Levine, Mason, and Brown.
H.

Author: Thomas R. Turner
E-Mail: trturner@uco.edu
Date: May, 2020

H

o

Copyright May, 2020 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.

H

Object files

#

obj = calcpar.o\
calclex.o \
calc.o

H

Bind the subset Pascal Parser and Scanner

#
calc: ${obj}

g++ -o calc ${obj} -Im -lI
H

o

File calc.cpp contains main
H

o

calc.o: calc.cpp calcpar.h
g++ -c -g calc.cpp

Figure 3. File makecalc

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

H

w

Create file calclex.cpp from file calclex.l using lex.
Rename the generate C-file lex.yy.c to calclex.cpp

in preparation for compiling it with the C++ compiler
H

mw

calclex.cpp: calclex.l calclex.h
lex calclex.|
mv lex.yy.c calclex.cpp

H.

bg

Compile the lexer, calclex.cpp

H

calclex.o: calclex.cpp calclex.h y.tab.h
g++ -c -g calclex.cpp

H

Create files y.tab.c and y.tab.h from file calcpar.y

Rename file y.tab.c to calcpar.cpp

in preparation for compiling it with the C++ compiler
H

o

calcpar.cpp: calcpar.y
yacc -d -v calcpar.y
mv y.tab.c calcpar.cpp

H#

o

Compile the parser, calcpar.cpp

H
calcpar.o: calcpar.cpp calcpar.h caiclex.h y.tab.h
g++ -c -g calcpar.cpp
#
#
Figure 3. File makecalc (continued)
Notes:

1. Comments begin with # and end with a newline.

2. A\ concatenates the following line with the current line.
3. The symbol obj contains a list of the object files created by this makefile.
4. The format of a makefile directive is:

soup: ingredients

\t instruction 1

\t instruction 2

\t instruction n

Example:

calc.cpp: calc.cpp calcpar.h

\t g++ -c -g calc.cpp

The goal is to create relocatable object file calc.o. Files calc.cpp and any include-
files referenced is the source calc.cpp are listed as necessary “ingredients.”

The tab character symbolized by \t is given to visualize an essential character that is
invisible. Please note that forgetting to put a tab character on this line is likely the
most common and frequent error when constructing makefiles. The command:

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

g++-c -g calc.cpp

creates the relocatable file calc.o.
File calc.cpp

//
//File calc.cpp is the main entry for a four-function calculator
//described by Levine, Mason, and Brown in chapter 3 of Lex & Yacc.
//
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: May, 2020
//
//Copyright May, 2020 by Thomas R. Turner
//Do not reproduce without permission from Thomas R. Turner
//
//C++ Standard include files
//
#include <cstdlib>
#include <cstring>
#include <jostream>
#include <fstream>
#include <iomanip>
#include <cstdio>
#include <string>
using namespace std;
//
//Application include files
//
#include "calclex.h"
#include "calcpar.h"
//
//
void CalcMgr(void){int rc=yyparse();}
//
//Function main processes command line arguments
//
int main()
{ CalcMgr();

return 0;

}

Figure 4. File calc.cpp
Notes:
1. Please observe that function main does little more than invoke the parser, yyparse().

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

File calclex.l
%({
//
//File calclex.l contains a scanner specification for a calculator
//defined by Messrs. Levine, Mason, and Brown.

/!

//Authors: J. R. Levine, T. Mason, and D. Brown
//Revised by: Thomas R. Turner

//E-Mail: trturner@uco.edu

//Date: May, 2020

//

//Copyright May, 2020 by Thomas R. Turner.

//Do not reproduce without permission from Thomas R. Turner.
//
//C++ inlcude files
//
#include <jostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <cstdlib>
using namespace std;
//
//Application include files
//
#include "calclex.h"
#include "y.tab.h"
//
//Functions
//
int /dentifier(void);
int Real(void);

//

//Externals

//

extern double vbltable[26];
%}

Figure 5. File calclex.| (definition section)
Notes:
1. The definition section is everything before the first %% that you can see on the following

page.

2. The most important part of the definition section is the literal block enclosed in %{ ... %}.

3. The copyright notice is given to prohibit you from using this example if you, later,
become an instructor, without obtaining my permission first.

4. Note the inclusion of file y.tab.h. File y.tab.h is created by the parser generator yacc.
File y.tab.h assigns positive integer codes to all terminal and nonterminal symbols.

5. Functions that are called from the rules section must be declared in the literal block.

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

6. Any data declared in another compilation unit — another file — that is referenced in this
file must be declared in the literal block.

File calclex.l (continued)

%%

[\t]; /* ignore whitespace*/

[\n\r] return CRNL;

[a-z] return /dentifier();

[0-9]+ return Real();

[0-9]+[Ee][+-]?[0-9]+ return Real();

[0-9]+\.[0-9]+([Ee][+-]?[0-9]+)? return Real();

“ypr return PLUS;

““ return MINUS;

“En return MUL;

“” return DIV;

“ return LPAREN;

“)” return RPAREN;

“=" return ASSIGN;

Figure 5. File calclex.l (rules section) (continued)

Notes:

1. Each rule in the rules section begins with a regular expression and is followed by an
action written in C or C++. If the action is a single statement, it must be terminated with
a semicolon. Multiple statements must be enclosed in a block.

2. Capitalized names are symbols for integer codes assigned to those symbol in file y.tab.h.

File calclex.l (continued)
%%
//
//User subroutines
//
//

//Function Identifier stores the index of the single letter identifier

//in yacc semantic structure yylval.vbino.

//

int /dentifier(void)

{ yylval.vbino=yytext[0]-'a’;
return NAME;

}
I/

//Function Real converts the numeric string to a double and stores it

//in yacc semantic structure yylval.dval

//

int Real(void)

{ vyylval.dval = atof(yytext);
return NUMBER;

}

Figure 5. File calclex.| (user subroutine section) (continued)
Notes:

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

1. Member vbino (variable number) in the structure yylval is assigned an integer value, 0 <
i < 25. The %union directive in file calcpar.y defines all members of structure yylval.

2. Member dval in the structure yylval is assigned the floating-point equivalent of the
string recognized by the scanner (yylex()).

3. Together vblno and dval represent a primitive symbol table consisting of floating-point

’ .

variables having names ‘@’, ‘b’, ... ‘Z’;

File calclex.h
#ifndef calclex_h
#define calclex_h 1

/1

// File calclex.h defines class Lexer.
/!
// Author: Thomas R. Turner
// E-Mail: trturner.uco.edu
// Date: May, 2020

//
// Copyright May, 2020 by Thomas R. Turner

// Do not reproduce without permission from Thomas R. Turner.
//
//
// Standard C and C++ include files
//
#include <cstdio>
#include <fstream>
#include <jostream>
//

//Namespaces

I/

using namespace std;
//
//Function: yylex

//Function yylex is the calcner. Function yylex returns an integer
//token code as defined above or 0 if end-of-file has been

//reached.

//

#ifdef __cplusplus

extern "C"

#endif

int yylex (void);

#endif

Figure 6. File calclex.h

Notes:

1. Function yylex is generated by the linux utility lex. Since yylex is a C-function rather than
a C++ function its name is not mangled and must be so designated when compiled by
the C++ compiler.

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

File calcpar.y
%
//
//File calc.y contains a calculator grammar
//defined by Messrs. Levine, Mason, and Brown.

/!

//Authors: Levine, Mason, and Brown
//Revised by: Thomas R. Turner
//E-Mail: trturner@uco.edu

//Date: May, 2020

//

//Copyright May, 2020 by Thomas R. Turner.

//Do not reproduce without permission from Thomas R. Turner.
//
//C++ inlcude files
//
#include <jostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;
//
//
//Application include files
//

#include "calcpar.h"

/1

//Functions

/1

void yyerror(const char* m);
//
//Externals
//
//
//File Global Variables
//
double vbitable[26];

I/
%}

Figure 7. File calcpar.y (literal section)
Notes:

1. File calcpar.y contains the specification for the parser formally called a syntax analyzer.
By translating this file using the yacc tool an LL parser is created. The principal
advantage of the yacc tool is that the grammar is specified in the ordinary way with few
syntactic differences to accommodate computer character sets.

2. Like file calclex.l, functions called in the rules section and variables referenced in the
rules section must be declared in the literal block. Note that array vbitable (variable

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

table) is defined in this compilation unit meaning that storage is allocated for vbltable in
this compilation unit.

File calcpar.y (continued)

%union {

double dval;

int vbino;
}
%token CRNL
%token ASSIGN
%token PLUS
%token MINUS
%token MUL
%token DIV
%token LPAREN
%token RPAREN

%token <vblno> NAME
%token <dval> NUMBER

%type <dval> expression
%type <dval> primary
%type <dval> factor
File calcpar.y (definition section continued)
Notes:
1. The %union directive defines members used to perform semantic computations while

the program is being parsed. It is this feature that gives rise to the phrase “syntax-

directed translation”.

We define two members dval and vbino.

2.1.Symbol dval defines the semantic type associated with expressions. Expressions are
limited to those values that can be represented by a floating-point value, i.e.
numeric values can be expressed as floating-point values.

2.2.Symbol vbino defines the semantic type associated with NAMEs. NAMEs are
converted to an index into the primitive symbol table. Identifier vblno is the integer
index into the symbol table, vbltable.

The directive %token defines terminal symbols. In effect, identifiers CRNL, ASSIGN, ...,

and NUMBER are all terminal symbols.

We have two versions of the directive %token. The first version is type less and the

second version assigns a type to the terminal symbol.

4.1.Terminal symbol NAME is given an associated semantic value, <vblno>, as an index
into the symbol table, vbitable.

4.2. Terminal symbol NUMBER is given an associated semantic value, <dval>, as a
numeric value containing the value to the string representation of the NUMBER.

The directive %type associates a type with a nonterminal symbol. In the case of the

directive
%type <dval> expression

the nonterminal expression is given a floating-point value (double) associated with it.

The symbol <dval> and its prior declaration in the %union directive define <dval> as a

synonym for C++ type double.

Programming Languages
CMSC 5023

File calcpar.y (continued)

Pasm Instructions Part 1
Lecture 4

%%
statement_list:
statement CRNL
{
}

statement_list:
statement _list statement CRNL
{
}

statement:
NAME ASSIGN expression
{
vbltable[$1]=$3;
}
statement:
expression
{
cout << “=" << ($1) << endl;
}
expression:
expression PLUS factor
{
$$=51+53;
}
expression:
expression MINUS factor

{

$$=51-$3;
}
expression:
factor
{
$$=951;
}
File calcpar.y (rules section)
Notes:

1. The format of the rules section is:

rule action

where rule is a grammar rule formatted as

leftside: rightside

For example, the rule expression — expression + factor is expressed

expression: expression PLUS factor

Nonterminal symbols are coded in all lowercase letters by convention. Terminal symbols
are capitalized by convention. The scanner establishes the relation between the

terminal symbol PLUS and the character ‘+'.

An action is simply a block of C++ statements enclosed in curly braces.

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

2.

w

In the rule statement: NAME ASSIGN expression, SS$ refers to statement, $1 refers to
NAME, $2 refers to ASSIGN, and $3 refers to expression.

The action vbltable[$1]=$3; means that NAME, or $1, is used as an index into the array
vbltable. We know, from our previous discussion, that NAME has been associated with the
type vblno and, further, <vblno> is a synonym for the type integer. That means that $1 has
type integer also.

What integer value does $1 have? Recall that NAMEs are identifier that are limited to single
lowercase letters. The scanner mapped the single letters to the integers 0 — 25 in the
statement yylval.vblno=yytext[0]-'a'. The pseudo variable $1 has an integer value ranging
from 0 to 25.

Every time variable a appears in calculator expressions it is translated to vbltable[0].
Likewise, for remaining single letter variables b, ¢, ..., z, they are translated to vbitable[1],
vbltable[2], ..., vbitable[25] respectively.

In a similar way pseudo variable $3 is associated with expression, it being the third grammar
symbol in the rule. Grammar symbol expression has been given type <dval>, a synonym for
type double. We know that array vbltable is compatible with type double from its
declaration, double vbitable[26];.

The action, vbltable[$1]=$3;, stores the value of the expression in the storage location
allocated for the variable.

By default, if no action is specified, the action, $$=$1, is executed.

Whenever the parser reduces a rule, it executes user C or C++ code associated with the rule,
known as the rule’s action. The action appears in braces after the end of the rule, before
the semicolon or vertical bar. The action code can refer to the values of the right-hand side
symbols as $1, $2, ..., and can set the value of the left-hand side by setting $$.

In the rules defining expression, the $-variables act like structures. For example, in the
rule:
expression: expression PLUS expression {$S =51 +53;}

what is really happening is:

expression: expression PLUS expression {$S.dval = $1.dval + $3.dval;}

11

Programming Languages
CMSC 5023

File calcpar.y (continued)

Pasm Instructions Part 1
Lecture 4

factor:
factor MUL primary
{
$$=51%*33;
}
factor:
factor DIV primary
{
if (63 ==0.0)
yyerror("divide by zero");
else
$$=51/53;
}
factor:
primary
{
$$=51;
}
primary:
MINUS primary
{
$$=-52;
}
primary:
LPAREN expression RPAREN
{
$$=52;
}
primary:
NUMBER
{
$$=51;
}
primary:
NAME
{
$$ = vbltable[$1];
}

File calcpar.y (rules section continued)

12

Programming Languages Pasm Instructions Part 1
CMSC 5023 Lecture 4

File calcpar.y (continued)

%%
//
//User function section
//
void yyerror(const char* m)
{ cout<<endl

cout << m;

cout << endl;

}
I/
I/

File calcpar.y (user subroutine section)
Notes:
1. Since function yyerror is not supplied, the programmer must create a function yyerror

File calcpar.h
#ifndef calcpar_h
#define calcpar_h 1
//
// File calcpar.h defines the interface to the parser generated by
// yacc.
//
// Author: Thomas R. Turner
// E-Mail: trturner.uco.edu
// Date: May, 2020
//
// Copyright May, 2020 by Thomas R. Turner
// Do not reproduce without permission from Thomas R. Turner.

//
//Application include files

//
#include "calclex.h"
//
//
//Function yyparse is the parser generated by yacc.
//
#ifdef __cplusplus
extern "C"

#tendif

int yyparse (void);
#endif

Figure 8. File calcpar.h

Notes:
1. Function yyparse is generated by the linux utility yacc. Since yyparse is a C-function
rather than a C++ function its name is not mangled and must be so designated when
compiled by the C++ compiler.

13

