
Translator Design Project 9
CMSC 4173 Subset Pascal Variables

Project: Generate P-Code instructions for variable and procedure_statement. Implement
semantics for the shaded rules in the table below. Implementation notes are
written immediately below the rule. Write your p-code instructions to a file
having the same prefix as the file containing the Subset Pascal Program but having
the suffix “.pcd”

Compile test programs in Table 2 and inspect the P-Code produced to validate that
your Subset Pascal Compiler functions properly.

PCode Generation: File Description
 PCode.h Defines class PCode for creating p-code instructions
 PCode.cpp Implements class PCode
 Node.h Defines class Node for creating expression trees
 Node.cpp Implements class Node
 Exp.h Defines class Exp for printing expression trees
 Exp.cpp Implements class Exp

 Rule
No. LHS RHS

 program  program_head program_declarations program_body
 program_head  program id program_parameters ;
 program_declarations  variable_declarations subprogram_definitions
 program_body  compound_statement .
 program_parameters  
 program_parameters  (program_parameter_list)
 program_parameter_list  identifier_list
 identifier_list  id
 identifier_list  identifier_list , id

 variable_declarations  
 variable_declarations  variable_declarations var identifier_list : type ;

 type  standard_type
 type  array [intlit .. intlit] of standard_type

 standard_type  id

 subprogram_definitions  
 subprogram_definitions  subprogram_definitions subprogram_definition ;

 subprogram_definition  subprogram_head variable_declarations subprogram_body

 subprogram_head  function_prolog subprogram_parameters : standard_type ;
 subprogram_head  procedure_prolog subprogram_parameters ;

 function_prolog  function id
 procedure_prolog  procedure id

 subprogram_body  compound_statement

 subprogram_parameters  
 subprogram_parameters  (parameter_list)

Table 1. Subset Pascal Grammar

 1

Translator Design Project 9
CMSC 4173 Subset Pascal Variables

 Rule
No. LHS RHS

 parameter_list  identifier_list : type
 parameter_list  parameter_list ; identifier_list : type

 compound_statement  begin optional_statements end

 optional_statements  
 optional_statements  statement_list

 statement_list  statement
 statement_list  statement_list ; statement

 statement  variable := expression
 statement  procedure_statement

28 statement  compound_statement
29 statement  if expression then statement else statement
30 statement  while expression do statement
31 variable  id
32 variable  id [expression]

33 procedure_statement  id
34 procedure_statement  id (expression_list)

35 expression_list  expression
36 expression_list  expression_list , expression

37 expression  simple_expression
38 expression  simple_expression = simple_expression
39 expression  simple_expression <> simple_expression
40 expression  simple_expression < simple_expression
41 expression  simple_expression <= simple_expression
42 expression  simple_expression > simple_expression
43 expression  simple_expression >= simple_expression

44 simple_expression  term
45 simple_expression  + term
46 simple_expression  - term
47 simple_expression  simple_expression + term
48 simple_expression  simple_expression - term
49 simple_expression  simple_expression or term

50 term  factor
51 term  term * factor
52 term  term / factor
53 term  term div factor
54 term  term mod factor
55 term  term and factor

Table 1. Subset Pascal Grammar (continued)

 2

Translator Design Project 9
CMSC 4173 Subset Pascal Variables

 Rule
No. LHS RHS
56 factor  id
57 factor  id [expression]
58 factor  id (expression_list)
59 factor  (expression)
60 factor  not factor
61 factor  intlit
62 factor  realit
63 factor  chrlit

Table 1. Subset Pascal Grammar (continued)

Test Program P-Code
31 variable  id
program v00;
 var a,b:integer;
begin{v00}
 a:=b
end{v00}.

 lda 0 5
 lvi 0 6
 sti i

31 variable  id
program v01;
 var b:boolean;
begin{v01}
 b:=true
end{v01}.

 lda 0 5
 ldc b 1
 sti b

31 variable  id
program v02;
 var r:real;
 function f:real;
 begin{f}f:=7.8 end{f};
begin{v02}
 r:=f
end{v02}.

 lda 0 0
 ldc r 7.8
 sti r
 lda 0 5
 mst 0
 cup 0 L004
 sti r

32 variable  id [expression]
program v03;
 var a:array[5..14] of real;
 var r:real;
 var i:integer;
begin{v03}
 i:=3;
 a[i+6]:=r
end{v03}.

 lda 0 16
 ldc i 3
 sti i
 lda 0 5
 lvi 0 16
 ldc i 6
 adi
 ldc i 5
 sbi
 ixa 1
 lvr 0 15
 sti r

Table 2. Sample programs that exercise variable productions and corresponding P-Code fragments
(continued)

 3

Translator Design Project 9
CMSC 4173 Subset Pascal Variables

 4

Test Program P-Code
33 procedure_statement  id
program ps00;
 procedure p; begin{p} end{p};
begin{ps00}
 p
end{ps00}.

 mst 0
 cup 0 L004

34 procedure_statement  id (expression_list)
program ps01;
 var b:boolean;
 procedure p; begin{p} end{p};
begin{ps01}
 b:=false;
 p;
 b:=true
end{ps01}.

 lda 0 5
 ldc b 0
 sti b
 mst 0
 cup 0 L004
 lda 0 5
 ldc b 1
 sti b

34 procedure_statement  id (expression_list)
program ps01;
 var b:boolean;
 procedure p; begin{p} end{p};
begin{ps01}
 b:=false;
 p;
 b:=true
end{ps01}.

 lda 0 5
 ldc b 0
 sti b
 mst 0
 cup 0 L004
 lda 0 5
 ldc b 1
 sti b

34 procedure_statement  id (expression_list)
program ps02;
 procedure p(i:integer;r:real);
 begin{p} end{p};
begin{ps02}
 p(1,3.14159)
end{ps02}.

mst 0
ldc i 1
ldc r 3.14159
cup 2 L004

34 procedure_statement  id (expression_list)
program ps03;
 var i:integer;
 var r:real;
 procedure p(i:integer;r:real);
 begin{p} end{p};
begin{ps03}
 p(i+7,r+3.14159)
end{ps03}.

mst 0
lvi 0 5
ldc i 7
adi
lvr 0 6
ldc r 3.14159
adr
cup 2 L004

Table 2. Sample programs that exercise procedure_statement productions and corresponding P-Code
fragments (continued)

