Translator Design
CMSC 4173

Project:

PCode Generation:

Project 7
Subset Pascal Simple Expressions

Generate P-Code instructions for simple_expressions. Implement semantics for
the shaded rules in the table below. Implementation notes are written immediately
below the rule. Write your p-code instructions to a file having the same prefix as
the file containing the Subset Pascal Program but having the suffix “.pcd”

Compile test programs in Table 2 and inspect the P-Code produced to validate that
your Subset Pascal Compiler functions properly.
File Description

No.

PCode.h Defines class PCode for creating p-code instructions
PCode.cpp Implements class PCode
Node.h Defines class Node for creating expression trees
Node.cpp Implements class Node
Exp.h Defines class Exp for printing expression trees
Exp.cpp Implements class Exp
Rule
LHS RHS
program — program_head program_declarations program_body
program_head — program id program_parameters ;
program_declarations — variable_declarations subprogram_definitions
program_body — compound_statement .
program_parameters - €
program_parameters — (program_parameter_list)
program_parameter_list — identifier_list
identifier_list - id
identifier_list — identifier_list, id
variable_declarations > €
variable_declarations — variable_declarations var identifier_list : type ;
type — standard_type
type — array [intlit .. intlit] of standard_type
standard_type — id
subprogram_definitions > €
subprogram_definitions — subprogram_definitions subprogram_definition ;

subprogram_definition

subprogram_head
subprogram_head

function_prolog
procedure_prolog

subprogram_body

subprogram_parameters
subprogram_parameters

"

"

subprogram_head variable_declarations subprogram_body

function_prolog subprogram_parameters : standard_type ;

procedure_prolog subprogram_parameters ;

function id
procedure id

compound_statement

(S
(parameter_list)

Table 1. Subset Pascal Grammar

Translator Design
CMSC 4173

No.

28
29
30
31
32

33
34

35
36

37
38
39
40
41
42
43

44
45
46
47
48
49

50
51
52
53
54
55

LHS
parameter_list
parameter_list

compound_statement

optional_statements
optional_statements

statement_list
statement_list

statement
statement
statement
statement
statement
variable

variable

procedure_statement
procedure_statement

expression_list
expression_list

expression
expression
expression
expression
expression
expression
expression

simple_expression
simple_expression
simple_expression
simple_expression
simple_expression
simple_expression

term
term
term
term
term
term

R "

R I 2R 2 N S S N A A

il ddl

R R

Project 7

Subset Pascal Simple Expressions

Rule
RHS
identifier_list : type
parameter_list ; identifier_list : type

begin optional_statements end

(S
statement_list

statement
statement_list ; statement

variable := expression
procedure_statement

compound_statement

if expression then statement else statement
while expression do statement

id

id [expression]

id
id (‘expression_list)

expression
expression_list, expression

simple_expression

simple_expression = simple_expression
simple_expression <> simple_expression
simple_expression < simple_expression
simple_expression <= simple_expression
simple_expression > simple_expression
simple_expression >= simple_expression

term

+term

- term

simple_expression + term
simple_expression - term
simple_expression or term

factor

term * factor
term / factor
term div factor
term mod factor
term and factor

Table 1. Subset Pascal Grammar (continued)

Translator Design Project 7
CMSC 4173 Subset Pascal Simple Expressions

Rule
No. LHS RHS
56 factor id
57 factor id [expression]
58 factor id (expression_list)
59 factor (‘expression)
60 factor not factor
61 factor intlit
62 factor realit
63 factor chrlit

Table 1. Subset Pascal Grammar (continued)

il diidld

Test Program | P-Code

44 simple_expression — term

program se00; ldc r 9.8
var r:real;

begin{se00}
r:=9.8

end{se00}.

45 simple_expression — +term

program se01; ldc r 9.8
var r:real;
begin{se01}
:=+9.8
end{se01}.

45 simple_expression — +term

program se02; Idc i 4
var i:integer;

begin{se02}
i:=+4

end{se02}.

46 simple_expression — -term

program se03; ldc r 9.8
var r:real; ngr

begin{se03}
r:=-9.8

end{se03}.

46 simple_expression — -term

program se04; ldc i 4
var i:integer; ngi

begin{se04}
i:=-4

end{se04}.

47 simple_expression — simple_expression + term

program se05; Ivi 0 6
var se:integer; var l:integer; Ivi 0 7
var r:integer; adi

begin{se05}
se:=l+r

end{se05}.

Table 2. Sample programs that exercise simple_expression productions and corresponding P-Code
fragments

Translator Design
CMSC 4173

Subset Pascal Simple Expressions

| Test Program | P-Code
47 simple_expression — simple_expression + term
program se06; lvr
var se:real; Ivi
var l:real; var r:integer; fit
begin{se06%} adr
se:=l+r
end{se06}.
47 simple_expression — simple_expression + term

program se07; vi
var se:real; fit
var l:integer; var r:real; Ivr

begin{se07} adr
se:=l+r

end{se07}.

47 simple_expression — simple_expression + term

program se08; lvr
var se:real; lvr
var l:real; var r:real; adr

begin{se08}
se:=l+r

end{se08}.

48 simple_expression — simple_expression - term

program se09; Ivi
var se:integer; var l:integer; vi
var r:integer; sbi

begin{se09}
se:=l-r

end{se09}.

48 simple_expression — simple_expression - term

program selO; lvr
var se:real; Ivi
var l:real; var r:integer; fit

begin{sel0} sbr
se:=l-r

end{sel0}.

48 simple_expression — simple_expression - term

program sell; Ivi
var se:real; flt
var l:integer; var r:real; lvr

begin{sell} sbr
se:=l-r

end{sell}.

48 simple_expression — simple_expression - term

program sel2;

var se:real;

var l:real; var r:real;
begin{sel2}

se:=l-r

end{sel2}.

Ivr
Ivr
sbr

Table 2. Sample programs that exercise simple_expression productions and corresponding P-Code

fragments (continued)

Translator Design Project 7

CMSC 4173 Subset Pascal Simple Expressions
| Test Program | P-Code
49 simple_expression — simple_expression or term
program sel3; Ivb 0 6
var se:boolean; Ivb 0 7
var l:boolean; var r:boolean; ior
begin{sel3}
se:=l or r
end{sel3}.

Table 2. Sample programs that exercise simple_expression productions and corresponding P-Code
fragments (continued)

