Translator Design Project 1

CMSC 4173 Subset Pascal Scanner
Project: Employ the Unix utility lex to create a lexical analyzer for the Subset Pascal
programming language. A block diagram of the entire Subset Pascal Compiler, P-
Code Assembler, and P-Code Interpreter is given in Figure 1.
Program File Description
Files:
pastkn.h File pastkn.h contains the list of positive integer codes that
uniquely identify each token. #define macro directives are
used to define each token. For example,
#define PROGRAM 3009.
Alternatively, you may construct this list using an
enumerated type. However, you must ensure that every
token has a positive integer code.
paslex.h File paslex.h contains the interface to the lexer and
supporting functions defined in file paslex.l.
pas.cpp File pas.cpp contains function main and processes
command line arguments.
makepascal File makepascal contains instructions for program paslex.
Instructions are written for the Unix utility make. Program
paslex is contained in file paslex.
makepas File makepas is a Unix script file that removes old file
created in the last creation of executable file pas and
invokes file makepascal to create a new executable file
pas. File makepas is given below.
rm *.0
rm paslex.cpp
rm pas
make -f makepascal
Command Project 1 can be invoked with zero or one program parameters. The first program
Line: parameter is the input file name. Sample command lines together with
corresponding actions by program pas are shown below. Boldfaced type indicates
data entered at the keyboard by the user.
S pas
Enter the input file name: p00.pas
S pas p00.pas
Input File: The input file contains a Subset Pascal program. The input file name must have
the suffix “.pas” Please refer to Figure 2 for an example of the format of an input
file.

Translator Design Project 1
CMSC 4173 Subset Pascal Scanner

(Source.pas)
Subset Pascal Compiler)
Source.ptrc
pas (
(Source.pcd)
i P-Code Assembler s "
Source.alst pasm ource.atrc
(Source.pex)
Input P-Machine Output
Keyboard pmch Display
C Source.itrc)

Figure 1. Subset Pascal Compiler, P-Code Assembler, and P-Code Interpreter.

Translator Design

Project 1

CMSC 4173 Subset Pascal Scanner

Output File: | The name of the output file has the same prefix as the input file and the four-
character suffix, “.pas” is replaced by the four-character suffix “.trc”
For example, if the name of the input file was p00.pas, the name of the output file
is p00.trc.
Each line of the output file contains information about a single token. A token is
a pair consisting of a unique integer identifying the pattern recognized by the
lexical analyzer and a string, called the spelling, that is a specific instance of the
pattern.
For the purpose of this project, five (5) items are required for each token. They
are:

1. TokenCode: The TokenCode is the first part of the quintuple that is a
token. It is the unique integer identifying the pattern recognized by the
lexical analyzer.

2. TokenName: The TokenName is a symbolic name for the TokenCode. For
example, the range-token, consisting of two periods in sequence, might
be assigned the unique integer code 300. The name for the unique integer
code is RANGE. The names of the tokens are given in Table 1. The integer
codes assigned to the tokens will be assigned by the parser generator,
yacc, so their values are arbitrary with the following exception. All integer
codes assigned to tokens must be positive counting numbers.

3. Line: The line is the line number on which the token appears.

4. Column: The column is the column number on which the first character of
the token appears.

5. TokenSpelling: The TokenSpelling is the actual string recognized by the
lexical analyzer. The TokenSpelling is the specific instance of a general
pattern recognized by the lexical analyzer. For example, the string of
characters “247” is recognized by the lexical analyzer as an integer literal
abbreviated to INTLIT.

Please refer to Figure 3 for an example of the output file format.
program p00;
var a:integer;
begin
a:=1;
a:=a+1
end.

Figure 2. Example input file p00.pas.

Translator Design
CMSC 4173

Project 1
Subset Pascal Scanner

Token:Code=293 Name= PROGRAM line= 1 col= 1 Spelling="program"
Token:Code=300 Name= ID line= 1 col= 9 Spelling="p00"
Token:Code=265 Name= SEMICOLON line= 1 col= 12 Spelling=";"
Token:Code=297 Name= VAR line= 2 col= 3 Spelling="var"

Token:Code=300 Name= ID line= 2 col= 7 Spelling="a"
Token:Code=266 Name= COLON line= 2 col= 8 Spelling=":"
Token:Code=300 Name= ID line= 2 col= 9 Spelling="integer"

Token:Code=265 Name= SEMICOLON line= 2 col= 16 Spelling=";"
Token:Code=281 Name= BEGIN line= 3 col= 1 Spelling="begin"
Token:Code=300 Name= ID line= 4 col= 3 Spelling="a"
Token:Code=262 Name= ASSIGN line= 4 col= 4 Spelling=":="
Token:Code=301 Name= INTLIT line= 4 col= 6 Spelling="1"
Token:Code=265 Name= SEMICOLON line= 4 col= 7 Spelling=";"

Token:Code=300 Name= ID line= 5 col= 3 Spelling="a"
Token:Code=262 Name= ASSIGN line= 5 col= 4 Spelling=":="
Token:Code=300 Name= ID line= 5 col= 6 Spelling="a"

Token:Code=258 Name= PLUS line= 5 col= 7 Spelling="+"
Token:Code=301 Name= INTLIT line= 5 col= 8 Spelling="1"
Token:Code=285 Name= END line= 6 col= 1 Spelling="end"
Token:Code=263 Name= PERIOD line= 6 col= 4 Spelling="."

Figure 3. Example output file p00.trc.

Translator Design

Project 1
CMSC 4173 Subset Pascal Scanner
Token Token
TokenCode TokenName Pattern TokenCode TokenName Pattern
PLUS + AND and
MINUS - ARRAY array
STAR * BEGIN begin
SLASH / DIV div
ASSIGN = DO do
PERIOD ELSE else
COMMA , END end
SEMICOLON ; FUNCTION function
COLON : IF if
EQU = MOD mod
NEQ <> NOT not
LES < OF of
LEQ <= OR or
GRT > PROCEDURE procedure
GEQ >= PROGRAM program
LPAREN (THEN then
RPAREN) TO to
LBRACKET [TYPE type
RBRACKET] VAR var
RANGE .- WHILE while
Table 1. Subset Pascal Token Specifications

Translator Design
CMSC 4173

Project 1
Subset Pascal Scanner

TokenCode

TokenName

Pattern

ID

An identifier must have at least one character. Only the first
30 characters will be used to distinguish one identifier from
another. The length of identifiers is undefined. All identifiers
and reserve words are case-insensitive.

An identifier can begin with a letter or the underscore
character. Subsequent characters can be letters, digits, or the
underscore character.

INTLIT

An integer literal is one or more digits.

REALIT

A real literal — a real number constant — consists of one or
more integer digits, a decimal point, one or more fractional
digits, and an optional exponent. The exponent, if present, is
the letter e, an optional sign, and one or more digits.
Remember, Pascal is case-insensitive so the letter e may be
capitalized.

REALIT

A real literal — a real number constant — consists of one or
more integer digits and an exponent.

CHRLIT

any single character enclosed between two apostrophes or, to
represent an apostrophe, a doubled apostrophe enclosed
between two apostrophes

COMMENT

Comments begin with an opening curly brace, {, and end with
a closing curly brace, }, Any number, including zero, of
characters can appear in a comment. Comments can include
multiple lines. No tokens are produced when a comment is
recognized and no action is taken. Comments are ignored.

Table 1. Subset Pascal Token Specifications (continued)

	pas.cpp
	makepascal
	makepas
	 a:=1;
	end.
	=
	A real literal – a real number constant – consists of one or more integer digits, a decimal point, one or more fractional digits, and an optional exponent. The exponent, if present, is the letter e, an optional sign, and one or more digits. Remember, Pascal is case-insensitive so the letter e may be capitalized.

