
Translator Design Project 1
CMSC 4173 Subset Pascal Scanner

 1

Project: Employ the Unix utility lex to create a lexical analyzer for the Subset Pascal
programming language. A block diagram of the entire Subset Pascal Compiler, P-
Code Assembler, and P-Code Interpreter is given in Figure 1.

Program
Files:

File Description

 pastkn.h File pastkn.h contains the list of positive integer codes that
uniquely identify each token. #define macro directives are
used to define each token. For example,
#define PROGRAM 309.

Alternatively, you may construct this list using an
enumerated type. However, you must ensure that every
token has a positive integer code.

 paslex.h File paslex.h contains the interface to the lexer and
supporting functions defined in file paslex.l.

 pas.cpp File pas.cpp contains function main and processes
command line arguments.

 makepascal File makepascal contains instructions for program paslex.
Instructions are written for the Unix utility make. Program
paslex is contained in file paslex.

 makepas File makepas is a Unix script file that removes old file
created in the last creation of executable file pas and
invokes file makepascal to create a new executable file
pas. File makepas is given below.
rm *.o
rm paslex.cpp
rm pas
make -f makepascal

Command
Line:

Project 1 can be invoked with zero or one program parameters. The first program
parameter is the input file name. Sample command lines together with
corresponding actions by program pas are shown below. Boldfaced type indicates
data entered at the keyboard by the user.
$ pas
Enter the input file name: p00.pas

$ pas p00.pas

Input File: The input file contains a Subset Pascal program. The input file name must have
the suffix “.pas” Please refer to Figure 2 for an example of the format of an input
file.

Translator Design Project 1
CMSC 4173 Subset Pascal Scanner

 2

Subset Pascal Compiler
pas

Source.pas

Source.pcd

P-Code Assembler
pasm

P-Machine
pmch

Source.pex

Source.alst

Source.ptrc

Source.atrc

Source.itrc

Input
Keyboard

Output
Display

Source.pcd

P-Code Assembler
pasm

Source.pex

Source.alst Source.atrc

Figure 1. Subset Pascal Compiler, P-Code Assembler, and P-Code Interpreter.

Translator Design Project 1
CMSC 4173 Subset Pascal Scanner

 3

Output File: The name of the output file has the same prefix as the input file and the four-
character suffix, “.pas” is replaced by the four-character suffix “.trc”
For example, if the name of the input file was p00.pas, the name of the output file
is p00.trc.

Each line of the output file contains information about a single token. A token is
a pair consisting of a unique integer identifying the pattern recognized by the
lexical analyzer and a string, called the spelling, that is a specific instance of the
pattern.

For the purpose of this project, five (5) items are required for each token. They
are:

1. TokenCode: The TokenCode is the first part of the quintuple that is a
token. It is the unique integer identifying the pattern recognized by the
lexical analyzer.

2. TokenName: The TokenName is a symbolic name for the TokenCode. For
example, the range-token, consisting of two periods in sequence, might
be assigned the unique integer code 300. The name for the unique integer
code is RANGE. The names of the tokens are given in Table 1. The integer
codes assigned to the tokens will be assigned by the parser generator,
yacc, so their values are arbitrary with the following exception. All integer
codes assigned to tokens must be positive counting numbers.

3. Line: The line is the line number on which the token appears.
4. Column: The column is the column number on which the first character of

the token appears.
5. TokenSpelling: The TokenSpelling is the actual string recognized by the

lexical analyzer. The TokenSpelling is the specific instance of a general
pattern recognized by the lexical analyzer. For example, the string of
characters “247” is recognized by the lexical analyzer as an integer literal
abbreviated to INTLIT.

Please refer to Figure 3 for an example of the output file format.

program p00;
 var a:integer;
begin
 a:=1;
 a:=a+1
end.

Figure 2. Example input file p00.pas.

Translator Design Project 1
CMSC 4173 Subset Pascal Scanner

 4

Token:Code=293 Name= PROGRAM line= 1 col= 1 Spelling="program"
Token:Code=300 Name= ID line= 1 col= 9 Spelling="p00"
Token:Code=265 Name= SEMICOLON line= 1 col= 12 Spelling=";"
Token:Code=297 Name= VAR line= 2 col= 3 Spelling="var"
Token:Code=300 Name= ID line= 2 col= 7 Spelling="a"
Token:Code=266 Name= COLON line= 2 col= 8 Spelling=":"
Token:Code=300 Name= ID line= 2 col= 9 Spelling="integer"
Token:Code=265 Name= SEMICOLON line= 2 col= 16 Spelling=";"
Token:Code=281 Name= BEGIN line= 3 col= 1 Spelling="begin"
Token:Code=300 Name= ID line= 4 col= 3 Spelling="a"
Token:Code=262 Name= ASSIGN line= 4 col= 4 Spelling=":="
Token:Code=301 Name= INTLIT line= 4 col= 6 Spelling="1"
Token:Code=265 Name= SEMICOLON line= 4 col= 7 Spelling=";"
Token:Code=300 Name= ID line= 5 col= 3 Spelling="a"
Token:Code=262 Name= ASSIGN line= 5 col= 4 Spelling=":="
Token:Code=300 Name= ID line= 5 col= 6 Spelling="a"
Token:Code=258 Name= PLUS line= 5 col= 7 Spelling="+"
Token:Code=301 Name= INTLIT line= 5 col= 8 Spelling="1"
Token:Code=285 Name= END line= 6 col= 1 Spelling="end"
Token:Code=263 Name= PERIOD line= 6 col= 4 Spelling="."

Figure 3. Example output file p00.trc.

Translator Design Project 1
CMSC 4173 Subset Pascal Scanner

 5

Token Token

TokenCode TokenName Pattern TokenCode TokenName Pattern
 PLUS + AND and
 MINUS - ARRAY array
 STAR * BEGIN begin
 SLASH / DIV div
 ASSIGN := DO do
 PERIOD . ELSE else
 COMMA , END end
 SEMICOLON ; FUNCTION function
 COLON : IF if
 EQU = MOD mod
 NEQ <> NOT not
 LES < OF of
 LEQ <= OR or
 GRT > PROCEDURE procedure
 GEQ >= PROGRAM program
 LPAREN (THEN then
 RPAREN) TO to
 LBRACKET [TYPE type
 RBRACKET] VAR var
 RANGE .. WHILE while

Table 1. Subset Pascal Token Specifications

Translator Design Project 1
CMSC 4173 Subset Pascal Scanner

 6

TokenCode TokenName Pattern
 ID An identifier must have at least one character. Only the first

30 characters will be used to distinguish one identifier from
another. The length of identifiers is undefined. All identifiers
and reserve words are case-insensitive.
An identifier can begin with a letter or the underscore
character. Subsequent characters can be letters, digits, or the
underscore character.

 INTLIT An integer literal is one or more digits.
 REALIT A real literal – a real number constant – consists of one or

more integer digits, a decimal point, one or more fractional
digits, and an optional exponent. The exponent, if present, is
the letter e, an optional sign, and one or more digits.
Remember, Pascal is case-insensitive so the letter e may be
capitalized.

 REALIT A real literal – a real number constant – consists of one or
more integer digits and an exponent.

 CHRLIT any single character enclosed between two apostrophes or, to
represent an apostrophe, a doubled apostrophe enclosed
between two apostrophes

 COMMENT Comments begin with an opening curly brace, {, and end with
a closing curly brace, }, Any number, including zero, of
characters can appear in a comment. Comments can include
multiple lines. No tokens are produced when a comment is
recognized and no action is taken. Comments are ignored.

Table 1. Subset Pascal Token Specifications (continued)

	pas.cpp
	makepascal
	makepas
	 a:=1;
	end.
	=
	A real literal – a real number constant – consists of one or more integer digits, a decimal point, one or more fractional digits, and an optional exponent. The exponent, if present, is the letter e, an optional sign, and one or more digits. Remember, Pascal is case-insensitive so the letter e may be capitalized.

