
Translator Design Project a01
CMSC 4173 P-Code Assembler Scanner

 1

Project: Employ the Unix utility lex to create a lexical analyzer for the P-Code Assembler.
Reserve words, mnemonics, numeric constants, and other token descriptions can
be extracted from the P-Machine Specification
 (http://cs2.uco.edu/~trt/cs4173/pspec.pdf).

Program
Files:

File Description

 PasmToken.h File PasmToken.h contains the list of positive integer codes
that uniquely identify each token. #define macro
directives are used to define each token. For example,
#define PROGRAM 309.

Alternatively, you may construct this list using an
enumerated type. However, you must ensure that every
token has a positive integer code.

 PasmScanner.h File PasmScanner.h contains the implementation of the
lexer and supporting functions defined in file
PasmScanner.l.

 PasmScanner.l File PasmScanner.l defines the interface to the lexer and
supporting functions.

 Pasm.cpp File Pasm.cpp contains function main and processes
command line arguments.

 makepasm File makepasm contains instructions for program pasm.
Instructions are written for the Unix utility make. Program
pasm is contained in file pasm.

 mkpasm File mkpasm is a Unix script file that removes old file
created in the last creation of executable file pas and
invokes file makepasm to create a new executable file
pasm. File makepasm is given below.
rm *.o
rm pasmlex.cpp
rm pasm
make -f makepasm

Command
Line:

Project 1 can be invoked with zero or one program parameters. The first program
parameter is the input file name. Sample command lines together with
corresponding actions by program pasm are shown below. Boldfaced type
indicates data entered at the keyboard by the user.
$ pasm
Enter the input file name: p00.pasm

$ pasm p00.pcd

Input File: The input file contains a P-Code Assembler program. The input file name must
have the suffix .pcd. Please refer to figure 1 for an example of the format of an
input file.

http://cs2.uco.edu/%7Etrt/cs4173/pspec.pdf

Translator Design Project a01
CMSC 4173 P-Code Assembler Scanner

 2

Output
Files:

A single output file is produced. The output file has the same prefix as the input
source.pcd and the suffix .pcd is replaced by the suffix .atrc. For example, if the
input file was named hello.pcd, the output file would be named hello.atrc.

$ pasm p00.pcd

File p00.trc is produced as shown in Figure 2.

L00001 ent sp L00002
 ent ep L00003
 rtn p
#define L00002 4
#define L00003 4
 mst 0
 cup 0 L00001
 stp

Figure 1. Example input file p00.pasm.

Source.pcd

P-Code Assembler
pasm

Source.pex

Source.alst Source.atrc

Source.pcd

P-Code Assembler
pasm

Source.pex

Source.alst Source.atrc

Figure 2. P-Code Assembler Block Diagram

Translator Design Project a01
CMSC 4173 P-Code Assembler Scanner

 3

Token Code Token Name Pattern Token Code Token Name Pattern
1 CUP_O cup 46 RND_O rnd
2 CSP_O csp 47 CHR_O chr
3 ENT_O ent 48 ORD_O ord
4 MST_O mst 49 STP_O stp
5 RTN_O rtn 50 LDA_O lda
6 EQU_O equ 51 LDC_O ldc
7 NEQ_O neq 52 LDI_O ldi
8 GRT_O grt 53 LVA_O lva
9 GEQ_O geq 54 LVB_O lvb

10 LES_O les 55 LVC_O lvc
11 LEQ_O leq 56 LVI_O lvi
12 ADI_O adi 57 LVR_O lvr
13 SBI_O sbi 58 LVT_O lvt
14 NGI_O ngi 59 STI_O sti
15 MPI_O mpi 60 IXA_O ixa
16 DVI_O dvi 61 RDB_F rdb
17 MOD_O mod 62 RDC_F rdc
18 ABI_O abi 63 RDI_F rdi
19 SQI_O sqi 64 RDR_F rdr
20 INC_O inc 65 RLN_F rln
21 DEC_O dec 66 WRB_F wrb
22 ADR_O adr 67 WRC_F wrc
23 SBR_O sbr 68 WRI_F wri
24 NGR_O ngr 69 WRE_F wre
25 MPR_O mrp 70 WRF_F wrf
26 DVR_O dvr 71 WRS_F wrs
27 ABR_O abr 72 WLN_F wln
28 SQR_O sqr 73 SQT_F sqt
29 IOR_O ior 74 LN_F ln
30 AND_O and 75 EXP_F exp
31 XOR_O xor 76 SP_R sp
32 NOT_O not 77 EP_R pc
33 INN_O inn 78 MP_R mp
34 UNI_O uni 79 PC_R pc
35 INT_O int 80 NP_R np
36 DIF_O dif 81 A_T a
37 CMP_O cmp 82 B_T b
38 SGS_O sgs 83 C_T c
39 UJP_O ujp 84 I_T i
40 XJP_O xjp 85 R_T r
41 FJP_O fjp 86 S_T s
42 TJP_O tjp 87 T_T t
43 FLT_O flt 88 P_T p
44 FLO_O flo 89 X_T x
45 TRC_O trc 90 DEFINE #define

Translator Design Project a01
CMSC 4173 P-Code Assembler Scanner

 4

Token Code Token Name Pattern

91 LABEL A label begins with the capital letter L and is followed by any
number of integer digits. Example: L00001

92 INTLIT An integer literal is an optional sign followed by one or more
digits.

93 REALIT A real literal – a real number constant – consists of one or
more integer digits, a decimal point, one or more fractional
digits, and an optional exponent. The exponent, if present, is
the letter e, an optional sign, and one or more digits.
Remember, P-Code is case-insensitive so the letter e may be
capitalized.

93 REALIT A real literal – a real number constant – consists of one or
more integer digits and an exponent.

94 CHRLIT A character constant – a single character enclosed between
apostrophes. For example, the character constant, t, appears
in the source as ‘t’. An apostrophe is double so that a single
apostrophe appears as ‘’’’.

95 STRLIT A string constant – two or more characters enclosed between
apostrophes. For example, the string constant banana
appears as ‘banana’. Apostrophes in string constants are
doubled so that the constant don’t appears as ‘don’’t’.

96 ID Identifier – One or more lower case letters
97 ERROR An unrecognized token

	PasmScanner.l
	Pasm.cpp
	makepasm
	mkpasm
	 stp
	A real literal – a real number constant – consists of one or more integer digits, a decimal point, one or more fractional digits, and an optional exponent. The exponent, if present, is the letter e, an optional sign, and one or more digits. Remember, P-Code is case-insensitive so the letter e may be capitalized.

