
Translator Design Lecture 29
CMSC 4173 statement Semantics (rules 29 - 33)

1

29 statement → variable := expression
30 statement → procedure_statement
31 statement → compound_statement
32 statement → if expression then statement else statement
33 statement → while expression do statement

Note: Function statement must return a list of expressions since compound_statement is a list of
expressions.

29 statement → variable := expression
 sti t

variable expression

 Notes:
1. The goal is to create a single expression whose root is the PCode sti t, where t is the

type character representing the type of the expression. The type character t is one of
b, c, i, or r representing the type Boolean, character, integer, or real respectively.

2. The sti-PCode is an acronym for “store indirect.” By traversing the variable expression
first, we put the address in the second to top position on the stack. Then, we traverse
the expression putting the value to be stored on top of the stack.

3. The sti-instruction consumes both values on top of the stack storing the value on top of
the stack in the address in the next to top position.

 List<Exp*>* statement(Exp* variable,Exp* expression)
 1. Issue an error if the variable type does not match the expression type.

2. Create PCode P
2.1. Label: none
2.2. PCode Operation: store indirect

sti
2.3. Operand 1: type character
2.4. Operand 2: none

PCode* P=new PCode("","sti", expression->Type()->TypeChar() ,"");
3. Create Expression E

3.1. Left sub expression: parameter variable.
3.2. Right sub expression: parameter expression.
3.3. Type: void. assignment statements have no type
3.4. PCode: P created in step 2

Exp* E=new Exp(variable,expression,ST.TVoid(),P)
4. Create an empty list of expressions.

List<Exp*>* L=new List<Exp*>;
5. Insert Expression E created in step 3 into the list of expression L.

L->Insert(E);
6. Return a pointer to the list of the expressions L.

return L;

Translator Design Lecture 29
CMSC 4173 statement Semantics (rules 29 - 33)

2

30 statement → procedure_statement
 Notes:

1.
 List<Exp*>* statement(Exp* procedure_statement)
 1. Create an empty list of expressions.

List<Exp*>* L=new List<Exp*>;
2. Insert parameter procedure_statement, an expression, into the list of expression L.

L->Insert(procedure_statement);
3. Return a pointer to the list of the expressions L.

return L;

31 statement → compound_statement
 Notes:

1.
 List<Exp*>* statement(List<Exp*>* compound_statement)
 1. Return a pointer to the compound_statement, a list of expressions.

return compound_statement;

32 statement → if expression then statement else statement

expression

else_statement then_statement

truefalse

 expression

fjp elsebegin //false jump to elsebegin
then_statement
ujp elseend //unconditionally jump to else end

elsebegin:
else_statement

elseend:

Translator Design Lecture 29
CMSC 4173 statement Semantics (rules 29 - 33)

3

 List<Exp*>* statement
(Exp* expression
,List<Exp*>*then_statement
,List<Exp*>* else_statement
)

 1. Create the elsebegin label.
string elsebegin=L.New();

2. Create PCode P
2.1. Label: none
2.2. PCode Operator: false-jump

fjp
2.3. Operand 1: none
2.4. Operand 2: elsebegin-label.

P=new PCode("","fjp","",elsebegin);
3. Create Expression E.

3.1. Left sub expression: parameter expression.
3.2. Right sub expression: null
3.3. Type: Void
3.4. PCode: PCode P created in step 2

Exp* E=new Exp(expression,0,ST.TVoid(),P);
4. Create a list of expressions, IS, for If Statement.

List<Exp*>* IS=new List<Exp*>;
5. Insert the fjp-expression in the list of expressions

IS->Insert(E);
6. Append the list of expressions in parameter then_stateement.

IS->Append(then_statement);
7. Create the PCode label “elsebegin”.

string elseend=L.New();
8. Create the unconditional-jump to elseend, PCode P.

8.1. Label: none
8.2. PCode Operator: unconditional jump
8.3. Operand 1: none
8.4. Operand 2: elseend

P=new PCode("","ujp","",elseend);
9. Create an expression for the ujp-PCode and insert the expression into list IS.

E=new Exp(ST.TVoid(),P);
IS->Insert(E);

10. Append the list of expressions in parameter else_statement.
IS->Append(else_statement);

11. Create a PCode and an Expression for the label “elseend”
P=new PCode(elseend,"","","");
E=new Exp(ST.TVoid(),P);

12. Insert the “elseend” label onto the list of expressions, IS
IS->Insert(E);

13. Return a pointer to the list of expressions that contain the If-Statement, IS.
return IS;

Translator Design Lecture 29
CMSC 4173 statement Semantics (rules 29 - 33)

4

33 statement → while expression do statement

expression

statement

true

false

 whilebegin:

expression
fjp whileend
statement
ujp whilebegin

whileend:

Translator Design Lecture 29
CMSC 4173 statement Semantics (rules 29 - 33)

5

 List<Exp*>* statement(Exp* expression,List<Exp*>* statement)
 1. Create labels whilebegin and whileend.

string whilebegin=L.New();
string whileend=L.New();

2. Create a PCode and an Expression for the whilebegin label.
P=new PCode(whilebegin,"","","");
E=new Exp(ST.TVoid(),P);

3. Create a list of expressions, WS, for the while-statement
List<Exp*>* WS=new List<Exp*>;

4. Insert the whilebegin-expression onto the list WS.
WS->Insert(E);

5. Create the fjp-PCode and Expression.
P=new PCode("","fjp","",whileend);
E=new Exp(expression,0,ST.TVoid(),P);

6. Insert the fjp-expression onto the list of expressions, WS
WS->Insert(E);

7. Append the list of expressions, representing the loop body, in parameter statement.
WS->Append(statement);

8. Create a PCode and an Expression for the unconditional jump to the whilebegin label.
P=new PCode("","ujp","",whilebegin);
E=new Exp(ST.TVoid(),P);

9. Insert the ujp-expression onto the while statement.
WS->Insert(E);

10. Create a PCode and an expression for the whileend label.
P=new PCode(whileend,"","","");
E=new Exp(ST.TVoid(),P);

11. Insert the whileend label onto the while statement.
WS->Insert(E);

12. Return a pointer to the list of expressions that contain the While-Statement, WS.
return WS;

