Translator Design Lecture 35

CMSC 4173 procedure_statement Semantics (rules 36 - 37)
36 procedure_statement — id
37 procedure_statement — id (expression_list ')
36 procedure_statement - id

Exp* procedure_statement(string* id)

1. Find parameter id in the symbol table.
Sym* S=ST.Find(*id);
2. if parameter id cannot be found in the symbol table then issue an error.
if (1S) yyerror("Semantic error - ID cannot be found");
3. Create an empty list, L, of expressions.
List<Exp*>* [=new List<Exp*>;
4. If symbol S is a procedure symbol then call function UserSubprogram to create P-Code
instructions for the procedure_statement.
if (S->IsProcedureSymbol())return UserSubprogram((SubprogramSymbol*)S,L);
5. else if symbol S is a function symbol then call function StandardProcedure to create P-
Code instructions for the procedure_statement
else if (S->/sStandardProcedureSymbol())
return StandardProcedure((StandardProcedureSymbol*)S);
6. elseissue an error.
else yyerror("Semantic error - ID must be a procedure");
37 procedure_statement — id (expression_list')
Exp* procedure_statement(string* id, List<Exp*>* L)
1. Find parameter id in the symbol table.
Sym* S=ST.Find(*id);
2. if parameter id cannot be found in the symbol table then issue an error.
if (1S) yyerror("Semantic error - ID cannot be found");
3. If symbol Sis a procedure symbol then call function UserSubprogram to create P-Code
instructions for the procedure_statement.
if (S->IsProcedureSymbol())return UserSubprogram((SubprogramSymbol*)S,L);
4. else if symbol S is a function symbol then call function StandardProcedure to create P-
Code instructions for the procedure_statement
else if (S->IsStandardProcedureSymbol())
return StandardProcedure((StandardProcedureSymbol*)S,L);
5. elseissue an error.

else yyerror("Semantic error - ID must be a procedure");

Translator Design Lecture 35
CMSC 4173 procedure_statement Semantics (rules 36 - 37)

Exp* StandardProcedure(StandardProcedureSymbol* S)
1. Create a new call-standard-procedure P-Code, P.

1.1. Label: no label

1.2. PCode Operation: csp

1.3. Operand 1: no operand

1.4. Operand 2: CSP identifier found as S->CSPID()

PCode* P=new PCode("","csp","",S->CSPID());

2. Return a new expression with the P-Code of step 1.

2.1. Type: void

2.2. Left subexpression: null

2.3. Right subexpression null

2.4. P-Code: PCode created instep 1

return new Exp(ST.TVoid(),P);

Exp* StandardProcedure(StandardProcedureSymbol* S,List<Exp*>* L)
1. Traverse the list of argument-expressions and create an arg-pcode for each expression.
PCode* P;
Exp* E=0;
for (L->First();1L->IsEol();L->Next()) {
Exp* A=L->Member();
P=new PCode("","arg","","");
E=new Exp(E,A,ST.TVoid(),P);
}
2. Create a call-standard-procedure P-Code and insert it into an expression
P=new PCode ("","csp","",S->CSPID());
E=new Exp(E,0,ST.TVoid(),P);
3. Optionally print the expression.
E->PPrint(tfs);
4. Return a pointer to the expression E.
return £;

Translator Design Lecture 27
CMSC 4173 UserSubprogram

Exp* UserSubprogram(SubprogramSymbol* S,List<Exp*>* L)
1. Create P-Code, P, and expression E for use in this function
PCode* P;
Exp* E;
2. Create a mark-stack, mst, P-Code
2.1. Computer operand 1 of the P-Code. Operand 1 is the difference between the current
lexical level and the lexical level of the subprogram
int //=ST.LexicalLevel()-S->LexicalLevel();
2.2. Create the new P-Code
P=new PCode("","mst",II,"");
2.3. Create an expression for the P-Code
E=new Exp(ST.TVoid(),P);
3. Traverse the list of argument-expressions and create an arg-pcode for each expression

{ //
//Obtain the function type FT, and the return type, RT, of the function
//
Typ* RT=S->ReturnType();
PCode* P;

Exp* E;
//
//Put a mark stack, mst, at the bottom of the list.
//
int lI=ST.LexicalLevel()-S->LexicalLevel();
P=new PCode("","mst",Il,"");
E=new Exp(ST.TVoid(),P);
//
//Traverse the list of argument-expressions and create an arg-pcode
//for each expression
//
for (L->First(); IL->IsEol();L->Next()) {
Exp* A=L->Member();
P=new PCOde("","arg","","");
E=new Exp(E,A,ST.TVoid(),P);
}
//
//Create the cup-pcode and node
//
int pc=S->ParameterCount();
P=new PCode

" //Label

,"cup” //P-Code Op - Call User Procedure
,pc //Operand 1 - Parameter Count
,S->ELabel() //Operand 2 - Entry Label

);
E=new Exp(E,0,RT,P);
E->Print(tfs);
return E;

Translator Design Lecture 27
CMSC 4173 UserSubprogram

[} |

