
Translator Design Lecture 35
CMSC 4173 procedure_statement Semantics (rules 36 - 37)

 1

36 procedure_statement → id
37 procedure_statement → id (expression_list)

36 procedure_statement → id

 Exp* procedure_statement(string* id)
 1. Find parameter id in the symbol table.

Sym* S=ST.Find(*id);
2. if parameter id cannot be found in the symbol table then issue an error.

if (!S) yyerror("Semantic error - ID cannot be found");
3. Create an empty list, L, of expressions.

List<Exp*>* L=new List<Exp*>;
4. If symbol S is a procedure symbol then call function UserSubprogram to create P-Code

instructions for the procedure_statement.
if (S->IsProcedureSymbol())return UserSubprogram((SubprogramSymbol*)S,L);

5. else if symbol S is a function symbol then call function StandardProcedure to create P-
Code instructions for the procedure_statement
else if (S->IsStandardProcedureSymbol())
 return StandardProcedure((StandardProcedureSymbol*)S);

6. else issue an error.
else yyerror("Semantic error - ID must be a procedure");

37 procedure_statement → id (expression_list)

 Exp* procedure_statement(string* id, List<Exp*>* L)
 1. Find parameter id in the symbol table.

Sym* S=ST.Find(*id);
2. if parameter id cannot be found in the symbol table then issue an error.

if (!S) yyerror("Semantic error - ID cannot be found");
3. If symbol S is a procedure symbol then call function UserSubprogram to create P-Code

instructions for the procedure_statement.
if (S->IsProcedureSymbol())return UserSubprogram((SubprogramSymbol*)S,L);

4. else if symbol S is a function symbol then call function StandardProcedure to create P-
Code instructions for the procedure_statement
else if (S->IsStandardProcedureSymbol())
 return StandardProcedure((StandardProcedureSymbol*)S,L);

5. else issue an error.
else yyerror("Semantic error - ID must be a procedure");

Translator Design Lecture 35
CMSC 4173 procedure_statement Semantics (rules 36 - 37)

 2

Exp* StandardProcedure(StandardProcedureSymbol* S)
1. Create a new call-standard-procedure P-Code, P.

1.1. Label: no label
1.2. PCode Operation: csp
1.3. Operand 1: no operand
1.4. Operand 2: CSP identifier found as S->CSPID()

PCode* P=new PCode("","csp","",S->CSPID());
2. Return a new expression with the P-Code of step 1.

2.1. Type: void
2.2. Left subexpression: null
2.3. Right subexpression null
2.4. P-Code: PCode created in step 1
return new Exp(ST.TVoid(),P);

Exp* StandardProcedure(StandardProcedureSymbol* S,List<Exp*>* L)
1. Traverse the list of argument-expressions and create an arg-pcode for each expression.

PCode* P;
Exp* E=0;
for (L->First();!L->IsEol();L->Next()) {

Exp* A=L->Member();
P=new PCode("","arg","","");
E=new Exp(E,A,ST.TVoid(),P);

}
2. Create a call-standard-procedure P-Code and insert it into an expression

P=new PCode ("","csp","",S->CSPID());
E=new Exp(E,0,ST.TVoid(),P);

3. Optionally print the expression.
E->PPrint(tfs);

4. Return a pointer to the expression E.
return E;

Translator Design Lecture 27
CMSC 4173 UserSubprogram

 3

Exp* UserSubprogram(SubprogramSymbol* S,List<Exp*>* L)
1. Create P-Code, P, and expression E for use in this function

PCode* P;
Exp* E;

2. Create a mark-stack, mst, P-Code
2.1. Computer operand 1 of the P-Code. Operand 1 is the difference between the current

lexical level and the lexical level of the subprogram
int ll=ST.LexicalLevel()-S->LexicalLevel();

2.2. Create the new P-Code
P=new PCode("","mst",ll,"");

2.3. Create an expression for the P-Code
E=new Exp(ST.TVoid(),P);

3. Traverse the list of argument-expressions and create an arg-pcode for each expression

{ //--
 //Obtain the function type FT, and the return type, RT, of the function
 //--
 Typ* RT=S->ReturnType();
 PCode* P;
 Exp* E;
 //--
 //Put a mark stack, mst, at the bottom of the list.
 //--
 int ll=ST.LexicalLevel()-S->LexicalLevel();
 P=new PCode("","mst",ll,"");
 E=new Exp(ST.TVoid(),P);
 //--
 //Traverse the list of argument-expressions and create an arg-pcode
 //for each expression
 //--
 for (L->First();!L->IsEol();L->Next()) {
 Exp* A=L->Member();
 P=new PCode("","arg","","");
 E=new Exp(E,A,ST.TVoid(),P);
 }
 //--
 //Create the cup-pcode and node
 //--
 int pc=S->ParameterCount();
 P=new PCode
 ("" //Label
 ,"cup" //P-Code Op - Call User Procedure
 ,pc //Operand 1 - Parameter Count
 ,S->ELabel() //Operand 2 - Entry Label
);
 E=new Exp(E,0,RT,P);
 E->Print(tfs);
 return E;

Translator Design Lecture 27
CMSC 4173 UserSubprogram

 4

}

