
Translator Design Lecture 30
CMSC 4173 simple_expression Semantics (rules 48 - 55)

 1

48 simple_expression → term
49 simple_expression → sign term
50 simple_expression → simple_expression addop term

51 sign → +
52 sign → -

53 addop → +
54 addop → -
55 addop → or

48 simple_expression → term

 $$=$1

49 simple_expression → sign term
 ngi ngr

term
integer

term
real

 Exp* simple_expression(string* sign,Exp* term)
1. if (*sign==”+”) return term
2. term must have either type integer or type real. No other type is permitted.
3. If term has type integer then

3.1. Create PCode
3.1.1. ngi

3.2. Return expression e having
3.2.1. PCode P created in 3.1
3.2.2. Type integer
3.2.3. Left sub expression: term
3.2.4. Right sub expression: null

4. If term has type real then
4.1. Create PCode

4.1.1. ngr
4.2. Return expression e having

4.2.1. PCode P created in 4.1
4.2.2. Type real
4.2.3. Left sub expression: term
4.2.4. Right sub expression: null

Translator Design Lecture 30
CMSC 4173 simple_expression Semantics (rules 48 - 55)

 2

50 simple_expression → simple_expression addop term
 Exp* simple_expression(Exp* simpleexpression,string* addop,Exp* term)

if *addop=”+” return add(simpleexpression,term)
if *addop=”-” return subtract(simpleexpression,term)
if *addop=”or” return disjunction(simpleexpression,term)
else error(“invalid addop”)

50 simple_expression → simple_expression addop term
53 addop → +

adr adi

simpleexpression
real

simpleexpression
integer

term
real

term
integer

adr adr

flt

simpleexpression
integer

term
real

fltsimpleexpression
real

term
integer

 Exp* add(Exp* l,Exp* r)
 1. Semantics for term are dependent on addop. The information given here is for rule 53

addop → +.
2. Four expressions are returned depending on the types of input parameters l and r.

 2.1. Parameter l has type real. Parameter r has type real.
2.1.1. Create PCode P

adr
2.1.2. Return Expression E

PCode P created in 2.1.1.
Type real
Left sub expression: parameter l
Right sub expression : parameter r

 2.2. Parameter l has type integer. Parameter r has type real.
2.2.1. Create PCode P

flt
2.2.2. Create Expression L

PCode P created in 2.2.1.
Type real
Left subexpression: l

2.2.3. Create PCode P
adr

2.2.4. Return Expression E
PCode P created in 2.2.3.
Type real
Left sub expression: expression L created in 2.2.2.
Right sub expression : parameter r

Translator Design Lecture 30
CMSC 4173 simple_expression Semantics (rules 48 - 55)

 3

 2.3. Parameter l has type real. Parameter rhas type integer.
2.3.1. Create PCode P

flt
2.3.2. Create Expression R

PCode P created in 2.3.1.
Type real
Right subexpression: r

2.3.3. Create PCode P
adr

2.3.4. Return Expression E
PCode P created in 2.2.3.
Type real
Left sub expression: parameter r
Right sub expression : expression R created in 2.3.3.

 2.4. Parameter l has type integer. Parameter r has type integer.
2.4.1. Create PCode P

adi
2.4.2. Return Expression E

PCode P created in 2.4.1.
Type integer
Left sub expression: parameter l
Right sub expression : parameter r

50 simple_expression → simple_expression addop term
54 addop → -

sbr sbi

simpleexpression
real

simpleexpression
integer

term
real

term
integer

sbr sbr

flt

simpleexpression
integer

term
real

fltsimpleexpression
real

term
integer

 Exp* subtract(Exp* l,Exp* r)
 1. Semantics for term are dependent on addop. The information given here is for rule 54

addop → -.
2. Four expressions are returned depending on the types of input parameters l and r.

 2.1. Parameter l has type real. Parameter r has type real.
2.1.1. Create PCode P

sbr
2.1.2. Return Expression E

PCode P created in 2.1.1.
Type real
Left sub expression: parameter l
Right sub expression : parameter r

Translator Design Lecture 30
CMSC 4173 simple_expression Semantics (rules 48 - 55)

 4

 2.2. Parameter l has type integer. Parameter r has type real.
2.2.1. Create PCode P

flt
2.2.2. Create Expression L

PCode P created in 2.2.1.
Type real
Left subexpression: l

2.2.3. Create PCode P
sbr

2.2.4. Return Expression E
PCode P created in 2.2.3.
Type real
Left sub expression: expression L created in 2.2.2.
Right sub expression : parameter r

 2.3. Parameter l has type real. Parameter rhas type integer.

2.3.1. Create PCode P
flt

2.3.2. Create Expression R
PCode P created in 2.3.1.
Type real
Right subexpression: r

2.3.3. Create PCode P
sbr

2.3.4. Return Expression E
PCode P created in 2.2.3.
Type real
Left sub expression: parameter r
Right sub expression : expression R created in 2.3.3.

 2.4. Parameter l has type integer. Parameter r has type integer.
2.4.1. Create PCode P

sbi
2.4.2. Return Expression E

PCode P created in 2.4.1.
Type integer
Left sub expression: parameter l
Right sub expression : parameter r

Translator Design Lecture 30
CMSC 4173 simple_expression Semantics (rules 48 - 55)

 5

50 simple_expression → simple_expression addop term
55 addop → or

 ior

simpleexpression
Boolean

term
Boolean

 Exp* disjunction(Exp* l,Exp* r)
 1. Semantics for term are dependent on addop. The information given here is for rule 55

addop → or.
2. Both input expressions, l and r, must have type Boolean.
3. Create PCode P

3.1. ior
4. Create expression E having

4.1. PCode P created in step 3
4.2. Type: Boolean
4.3. Left sub expression: l.
4.4. Right sub expression: r.

