
Translator Design Lecture 28
CMSC 4173 term Semantics (rules 56 - 62)

 1

56 term → factor
57 term → term mulop factor

58 mulop → *
59 mulop → /
60 mulop → div
61 mulop → mod
62 mulop → and

56 term → factor

 $$=$1

57 term → term mulop factor
 Exp* term(Exp* term,string* mulop,Exp* factor)

if *mulop=”*” return term_1(term,factor)
if *mulop=”/” return term_2(term,factor)
if *mulop=”div” return term_3(term,factor)
if *mulop=”mod” return term_4(term,factor)
if *mulop=”and” return term_5(term,factor)
else error(“invalid mulop”)

57 term → term mulop factor
58 mulop → *

mpr mpi

term
real

term
integer

factor
real

factor
integer

mpr mpr

flt

term
integer

factor
real

fltterm
real

factor
integer

 Exp* term_1(Exp* term,Exp* factor)
 1. Semantics for term are dependent on mulop. The information given here is for rule 58

mulop → *.
2. Four expressions are returned depending on the types of input parameters term and

factor.
 2.1. term has type real. factor has type real.

2.1.1. Create PCode P
mpr

2.1.2. Return Expression E
PCode P created in 2.1.1.
Type real
Left sub expression: parameter term
Right sub expression : parameter factor

Translator Design Lecture 28
CMSC 4173 term Semantics (rules 56 - 62)

 2

 2.2. term has type integer. factor has type real.
2.2.1. Create PCode P

flt
2.2.2. Create Expression L

PCode P created in 2.2.1.
Type real
Left subexpression: term

2.2.3. Create PCode P
mpr

2.2.4. Return Expression E
PCode P created in 2.2.3.
Type real
Left sub expression: expression L created in 2.2.2.
Right sub expression : parameter factor

 2.3. term has type real. factor has type integer.
2.3.1. Create PCode P

flt
2.3.2. Create Expression R

PCode P created in 2.3.1.
Type real
Right subexpression: factor

2.3.3. Create PCode P
mpr

2.3.4. Return Expression E
PCode P created in 2.3.3.
Type real
Left sub expression: parameter term
Right sub expression : expression R created in 2.3.2.

 2.4. term has type integer. factor has type integer.
2.4.1. Create PCode P

mpi
2.4.2. Return Expression E

PCode P created in 2.4.1.
Type integer
Left sub expression: parameter term
Right sub expression : parameter factor

Translator Design Lecture 28
CMSC 4173 term Semantics (rules 56 - 62)

 3

57 term → term mulop factor
59 mulop → /

 dvr

term
real

factor
real

 Exp* term_2(Exp* term,Exp* factor)
 1. Semantics for term are dependent on mulop. The information given here is for rule 60

mulop → /.
2. Define mulop to have the same semantic type has a token so that it is a pointer to a

string (string*).
3. Function term_2 returns an expression
4. Function term_2 accepts two parameters, term and factor, both expressions.
5. Both input parameters must have type real.
6. Create PCode P

dvr
7. Return expression E having

7.1. PCode P created in step 6
7.2. Type real
7.3. Left sub expression: parameter term
7.4. Right sub expression: parameter factor.

57 term → term mulop factor
60 mulop → div

 dvi

term
integer

factor
integer

 Exp* term_3(Exp* term,Exp* factor)
 1. Semantics for term are dependent on mulop. The information given here is for rule 60

mulop → div.
2. Define mulop to have the same semantic type as a token so that it is a pointer to a string

(string*).
3. Function term_3 returns an expression
4. Function term_3 accepts two parameters, term and factor, both expressions.
5. Both input parameters must have type integer.
6. Create PCode P

dvi
7. Return expression E having

7.1. PCode P created in step 6
7.2. Type integer
7.3. Left sub expression: parameter term
7.4. Right sub expression: parameter factor.

Translator Design Lecture 28
CMSC 4173 term Semantics (rules 56 - 62)

 4

57 term → term mulop factor
61 mulop → mod

 mod

term
integer

factor
integer

 Exp* term_4(Exp* term,Exp* factor)
 1. Semantics for term are dependent on mulop. The information given here is for rule 61

mulop → mod.
2. Define mulop to have the same semantic type has a token so that it is a pointer to a

string (string*).
3. Function term_4 returns an expression
4. Function term_4 accepts two parameters, term and factor, both expressions.
5. Both input parameters must have type integer.
6. Create PCode P

mod
7. Return expression E having

7.1. PCode P created in step 6
7.2. Type integer
7.3. Left sub expression: parameter term
7.4. Right sub expression: parameter factor.

57 term → term mulop factor
62 mulop → and

 and

term
Boolean

factor
Boolean

 Exp* term_5(Exp* term,Exp* factor)
 1. Semantics for term are dependent on mulop. The information given here is for rule 62

mulop → and.
2. Define mulop to have the same semantic type has a token so that it is a pointer to a

string (string*).
3. Function term_5 returns an expression
4. Function term_5 accepts two parameters, term and factor, both expressions.
5. Both input parameters must have type Boolean.
6. Create PCode P

and
7. Return expression E having

7.1. PCode P created in step 6
7.2. Type Boolean
7.3. Left sub expression: parameter term
7.4. Right sub expression: parameter factor.

