Lecture 20
Symbols and Types

Translator Design
CMSC 4173

1.1. Symbol descriptors

Symbol descriptors contain a reference to the identifier for which the symbol is created, a
reference to the type descriptor and certain other information depending on the kind of the
symbol.

Kinds of symbols include constant, type, variable, function, and procedure. Explanations of
the symbol descriptors are given below.

1.1.1.Constant symbol descriptor
Constant symbol descriptors contain the attributes of named constants that appear

in a program.

The example below illustrates the structure of the predeclared Boolean constant

false.
Constant Symbol Descriptor
symkind id t constant

sk string Typ* Constant*

sk_constant “false”
Constant
t v
Typ* string
ll(yl
boolean type descriptor
typekind size alignment

tk int int

tk_boolean 1 1

Figure 1. Constant symbol descriptor for the Boolean constant false.

1.1.2.Type symbol descriptor
Type symbol descriptors are used to associate the name of a type with its attributes.
In Pascal boolean, char, integer, and real are names of the corresponding types. The
names are assigned by the compiler and, surprisingly, are not reserve words. It is

Translator Design
CMSC 4173

Lecture 20
Symbols and Types

possible but certainly not advisable! to assign these names to other types or
constants. The facility to create named types is made available to the programmer
in the type definition section of a Pascal program.

Example: type integer.

Type Symbol Descriptor
symkind id t
sk string Typ*
sk_type “integer”
integer type descriptor
typekind size alignment
tk int int
tk_integer 1 1

Figure 2. Type symbol descriptor for “integer”

Descriptors shown in Figures 1 and 2 are entered into the symbol table at lexical
level zero (0) by the compiler.

! Once the names were assigned to other constants their original associations would not be
accessible and one might not be able to declare any more variables of the type whose name was
reassigned.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

Example: type index=1..10;

Type symbol descriptor
symkind identifier typ
Symkind string Typ*
sk_type index

Type descriptor
typkind size alignment hi lo
Typkind int int Sym* Sym*
tk_range 32 32
Constant Symbol Descriptor
symkind | identifier typ value |
Symkind string Typ* string)
sk_constant “10”
4
Constant Symbol Descriptor
symkind | identifier typ value
Symkind string Typ* string
sk_constant “1”

4
Integer Type Descriptor

typkind size alignment
Typkind int int
tk_integer 32 32

Figure 8. Type symbol descriptor for type index=1..10;
Figure 8 notes:

1. The identifier index is stored in the current namespace. What kind of
identifier is index? It is the name of a type.
2. The type descriptor for identifier index is a sub-range. Sub-ranges are

delimited by an upper bound (hi) and a lower bound (/o). The bounds are
constants. In this case, the constants are unnamed integer constants.
1.1.3.Variable symbol descriptor

Variable symbol descriptors are employed to record the attributes of local variables,
parameters, and fields in records. The common theme for a variable symbol
descriptor is the relative address. A variable is allocated storage relative to the
current activation record that contains storage for all variables local to the active
subprogram. Parameters are treated exactly as variables. Storage for parameters
is allocated from the current activation record. The address of a field is relative to

Translator Design

CMSC 4173

Lecture 20

Symbols and Types

the start of the record and, therefore, can be managed in the same way as variables
and parameters.

Example: var c:char;r:real;

Variable symbol descriptor Variable symbol descriptor
symkind | identifier typ address symkind | identifier typ address
Symkind string Typ* int Symkind string Typ* int
sk_variable “c” 0 sk_variable “r” 64
4 A j
Type descriptor Type descriptor
typkind size alignment typkind size alignment
Typkind int int Typkind int int
sk_char 8 8 sk_real 64 64

Figure 9. Symbol and type descriptors for the declarations var c:char;r:real;

Figure 9 notes:

1.

First, a symbol descriptor for variable c is entered into the symbol table, then,
the symbol descriptor for variable r is entered.

Type descriptors for type char and real exist in the namespace at lexical level
zero (0): they were stored in the namespace by the compiler.

Since variable ¢ was declared first, it is assigned the first available location at
relative (bit) address zero (0)2. Next, variable r was assigned the next
available location. Real variables can only be assigned locations in memory
that begin on even multiples of 8-byte boundaries. The next available
location for a real variable is not immediately after variable c, at location 8
bits (1 byte), but at 64 bits (8 bytes). The intervening space between variable
¢ and variable r is not used.

1.1.4.Function and procedure symbol descriptors

Function and procedure symbol descriptors record the number and type of
parameters and a function symbol descriptor records the return type. Type
descriptors of the parameters are stored in a list. If the symbol descriptor records
the attributes of a function the first type descriptor on the list is the return type as
shown in figure 10.

Subprogram symbol descriptors also record an address. The address recorded is an
instruction address not an address in an activation record. The instruction address
is the address of the first instruction in the subprogram.

2 In reality, zero is not the first available location for local variables. Storage for private
subprogram control is allocated before local variables including the static and dynamic links, the
old extreme pointer, the return address, and the return value. Storage for parameters and
compiler temporaries is also allocated before local variables.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

Example: function adr(c,a:integer):integer;

Function symbol descriptor
symkind | identifier parms address
Symkind string List* int
sk_function “adr” 29
A
List
size L count
int Typ** int
3 3

return type

0
parameter ¢

< 1
parameter a

< 2

Integer Type Descriptor
typkind size alignment
Typkind int int

tk_integer 32 32

Figure 10. Symbol and type descriptors for function adr(c,a:integer):integer;

Figure 10 notes:

1. Function adr has an integer return type. Element zero of the list of types
records the return type of the function.
2. Function adr has two integer parameters, ¢ and a. Elements one and two

record the parameters types of the parameters.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

Example: procedure swap(var m,w:real);

Procedure symbol descriptor
symkind | identifier parms address
Symkind string List* int

sk_procedure| “swap” 37
v
List
size L count
int Typ** int
2 2
A 4
parm m 0
 Parmw .

A

Pointer type descriptor
typkind size alignment typ
Typkind int int Typ*
tk_pointer 32 32

Real Type Descriptor

typkind size alignment
Typkind int int
tk_real 64 64

Figure 11. Symbol and type descriptors for procedure swap(var m,w:real);

Figure 11 notes:

1. Procedure swap has two parameters, m and w. Both parameters have type
real.
2. Both parameters are reference parameters. The addresses of the values are

passed to procedure swap rather than a copy of the actual values. The type
of real reference parameters is real*, a pointer to a real.

1.2. Type descriptors
Type descriptors record the attributes of a type. Types are very different and so are type
descriptors. Symbol descriptors, because they describe identifiers have locality and must
be stored in a namespace hierarchy that accurately reflects scope. Type descriptors, on
the other hand, have no locality. They are not stored in namespaces. Access to types is
via identifiers. Type descriptors are accessed by references stored in symbol descriptors.

Translator Design
CMSC 4173

Lecture 20
Symbols and Types

Subsequent sections discuss kinds of type descriptors. Kinds of type descriptors include
scalar type descriptors for character, integer, and real types. An enumerated type is used
to record the attributes of type boolean in Pascal. Sub-range types are discussed next.

Explanations and examples of type descriptors, for arrays, records, pointers, sets, and
files are also given.

1.2.1.Character, integer, and real type descriptors
Character, integer, and real type descriptors have common attributes of size and
alignment. The attribute size specifies the number of bits occupied by a variable or
field of this type. The attribute alignment specifies where a variable of this type can
be allocated in memory. An IEEE 754 double-precision binary floating point value
can only be allocated on even multiples of 8-byte addresses. Thus, the alignment of
an IEEE 754 double-precision binary floating point value (real) is 64, or 64 bits, to
indicate that a variable of type real must begin on an 8-byte boundary. The units of

alignment, like size, are bits.

The diagrams in figure 12 illustrate the symbol and type descriptors that are entered
in the symbol table by the compiler at lexical level zero.

Character type symbol descriptor
symkind identifier typ
Symkind string Typ*
sk_type “char”

A

Character type descriptor
typkind size alignment
Typkind int int
sk_char 8 8

Integer type symbol descriptor

symkind identifier typ
Symkind string Typ*
sk_type “integer”

Integer type descriptor
typkind size alignment
Typkind int int

sk_integer 32 32

Real type symbol descriptor

symkind identifier typ
Symkind string Typ*
sk_type “real”

Real type descriptor

typkind size alignment
Typkind int int
sk_real 64 64

Figure 12. Symbol and type descriptors for types char, integer, and real.

1.2.2.Enumerated type descriptors and type boolean.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

Pascal type boolean is an example of the use of an enumerated type descriptor.
Pascal type boolean has two enumeration constants false and true. Constant
symbol descriptors are used in the type descriptor for the enumeration type as
shown in figure 13. Normally, the size and alignment of enumeration types and
their constants is 32-bits. However, in this case, for type boolean, the size and
alignment is 8-bits or one byte.

Translator Design Lecture 20

CMSC 4173 Symbols and Types
Boolean type symbol descriptor
symkind identifier typ
Symkind string Typ*
sk_type “boolean”

Enumerated type descriptor
typkind size alignment L
Typkind int int List*
tk_enum 8 8
y
List
size L count
int Sym** int
2 2
y
0
1
Y y
Constant Symbol Descriptor Constant Symbol Descriptor
symkind | identifier typ value symkind | identifier typ value
Symkind string Typ* string Symkind string Typ* string
sk_constant | “false” “0” sk_constant | “true” “1”

Cardinal Type Descriptor

typkind size alignment
Typkind int int
tk_cardinal 8 8

Figure 13. Symbol and type descriptors for type boolean.

1.2.3.Range type descriptors.
Range type descriptors are employed to record the attributes of a sequence of some
type that is inherently ordered and discrete. Such types include cardinal (whole
numbers), character, integer, and enumerated. The example below illustrates a
range that includes the lower case letters.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

Example: type lowercase="a’ .. ‘2’;

Type symbol descriptor

symkind identifier typ

Symkind string Typ*

sk_type |“lowercase”

Type descriptor
typkind size alignment lo hi
Typkind int int Sym* Sym*
tk_range 8 8

Constant Symbol Descriptor
symkind | identifier typ value |
Symkind string Typ* string)
sk_constant “a”

Constant Symbol Descriptor
symkind | identifier typ value
Symkind string Typ* string
sk_constant “z

Y
Character Type Descriptor

typkind size alignment
Typkind int int
tk_character 8 8

Figure 14. Range symbol and type descriptors for a used-defined type for lower-case letters.

1.2.4.Array type descriptors.
Array type descriptors reference subordinate types that describe the set of values
that can be used as indexes for the array and the set of the values that can be used
for the elements of the array. Index values are more restricted than element values.
Index values must be discrete and must be a range of sequential values having
integer representations. Acceptable index types include ranges of cardinal values,
integer values, characters, boolean values, and enumerated values.

Element types can be used to construct multiply dimensioned arrays. Element types
are unrestricted and can be an array type.

10

Translator Design Lecture 20
CMSC 4173 Symbols and Types

Two examples are given for arrays, 1) an array with a single dimension having a
range of characters as the index type and 2) an array having two dimensions where
ranges of cardinal values are employed as the index types.

Example: type carry=array[‘a’..’e’] of integer;

Type symbol descriptor

symkind | identifier typ
Symkind string Typ*

sk_type “carry”

Array type descriptor
typkind size alignment index element
Typkind int int Typ* Typ*
160 64
A
Type descriptor Integer type descriptor

typkind size alignment lo hi typkind size alignment
Typkind int int Sym* Sym* g Typkind int int
tk_range 8 8 tk_integer 32 32

Constant Symbol Descriptor
symkind | identifier typ value |
Symkind string Typ* string -
sk_constant “a”
Constant Symbol Descriptor
symkind | identifier typ value
Symkind string Typ* string
sk_constant “e”
y
Character Type Descriptor
R typkind size alignment
. Typkind int int
tk_character 8 8
Figure 15. Symbol and type descriptors for the type definition type carry=array[‘a’..’e’] of
integer.

11

Translator Design Lecture 20
CMSC 4173 Symbols and Types

Example: type carry=array[‘a’..’e’] of integer;

Type symbol descriptor
symkind | identifier yp
Symkind string Typ*
sk_type | “rmatrix”

Array type descriptor
typkind size alignment index element
Typkind int int Typ* Typ*
|
Array type descriptor Real type descriptor
Type symbol descriptor _ - -
- typkind size alignment index element typkind size alignment
symkind | identifier typ - - - - -
- - Typkind int int Typ* Typ* Typkind int int
Symkind string Typ*
tk_real 64 64
sk_type “ndx” |
‘ >
A
Type descriptor
typkind size alignment lo hi
Typkind int int Sym* Sym*
tk_range 8 8
\ 4
Constant Symbol Descriptor Constant Symbol Descriptor
symkind | identifier typ value symkind | identifier typ value
Symkind string Typ* string Symkind string Typ* string
sk_constant “0” sk_constant “9”

A,
Integer Type Descriptor

typkind size alignment
Typkind int int
tk_integer 32 32

Figure 16. Symbol and type descriptors for the type definitions
type ndx=0..9; rmatrix=array[ndx,ndx] of real;

1.2.5.Record type descriptors.
A record type descriptors contains a list of fields for the record. Each field is a
variable symbol descriptor. Fields are recorded in the order in which they are
declared.

12

Translator Design

CMSC 4173

Example: type complex=record re,im:real end{complex};

Type symbol descriptor

Lecture 20
Symbols and Types

symkind | identifier typ
Symkind string Typ*
sk_type | “complex”
v
Record type descriptor
typkind size alignment L
Typkind int int List*
tk_record 128 64
Y
List
size L count
int Sym** int
2 2
Y
0
1
Variable symbol descriptor
symkind | identifier typ address
Symkind string Typ* int
sk_variable “im” 64
Variable symbol descriptor
symkind | identifier typ address
Symkind string Typ* int
sk_variable “re” 0
-

Real Type Descriptor

typkind size alignment
Typkind int int
tk_real 64 64

Figure 17. Symbol and type descriptors for the type definitions

type complex=record re,im:real end{complex};

13

Lecture 20

Translator Design
Symbols and Types

CMSC 4173

1.2.6.Pointer type descriptors.
Pointer type descriptors contain the attributes of a pointer or an address. An

address occupies 32 bits and is aligned on 4-byte boundaries.
Example:
type

pelement=Nelement;

element=record prev:pelement; data:integer end{element};

Type symbol descriptor

symkind | identifier typ
Symkind string Typ*
sk_type “element”

Record type descriptor
typkind size alignment L
Typkind int int List*
tk_record 64 64
List
size L count
int Sym** int
2 2
0
1

Variable symbol descriptor
symkind | identifier typ address
Symkind string Typ* int
sk_variable | “data” 32

Integer Type Descriptor

typkind size alignment
Typkind int int
tk_real 32 32

Type symbol descriptor Variable symbol descriptor
symkind | identifier typ symkind | identifier typ address
Symkind string Typ* Symkind string Typ* int
sk_type |“pelement” sk_variable | “prev” 0

Pointer type descriptor

typkind size alignment typ
Typkind int int Typ*
tk_pointer 32 32

Figure 18. Symbol and type descriptors for the type definitions type pelement="element;
element=record prev:pelement; data:integer end{element};

14

Translator Design
CMSC 4173

Lecture 20

Symbols and Types

When pointers reference a record, the record is named as an incomplete type as in
the example below. Type element is not yet defined in the definition of type
pelement. Symbol table management must allow for the entry of types that are not
yet defined but only named. Symbol table management must allow type symbols

to be changed after their names are entered.

1.2.7.Set type descriptors.
Sets are implemented in an array of bits, one bit for each element in the set. If the
bit is set to true, element is present in the set. If the bit is set to false, the set does
not include that element.

In the example below, a variable of type seasonset occupies 64 bits. Bits0, 1, 2, and
3 are used to represent the set. Bit O represents the presence or absence of the
element spring. Bit 1 represents the element summer. In the same way, bits 2 and
3 represent elements autumn and winter.

The base type of a set must be discrete and its cardinality cannot exceed 64.
Example:
type season=(spring,summer,autumn,winter); seasonset=set of season;

Type symbol descriptor

Type symbol descriptor

Figure 19. Symbol and type descriptors for the type definitions

type season=(spring,summer,autumn,winter);

15

symkind | identifier typ symkind | identifier typ
Symkind string Typ* Symkind string Typ*
sk_type | “seasonset” sk_type *“season”
v
Set type descriptor Enum type descriptor
typkind size alignment typ typkind size alignment L
Typkind int int Typ* Typkind int int List*
tk_set 64 64 tk_enum 64 64
A4
List
size L count
int Sym** int
4 4
Constant Symbol Descriptor Constant Symbol Descriptor
symkind | identifier typ value symkind | identifier typ value
Symkind string Typ* string v Symkind string Typ* string
sk_constant| “spring” | “0” 0 sk_constant | “autumn” | 2
L I
2
Constant Symbol Descriptor 3 — Constant Symbol Descriptor
symkind | identifier typ value T symkind | identifier typ value
Symkind string Typ* string Symkind string Typ* string
sk_constant | “summer” | “1” sk_constant| “winter” | “3”
v I
v
Integer Type Descriptor
typkind size alignment
Typkind int int
tk_integer 32 32

Translator Design Lecture 20
CMSC 4173 Symbols and Types

seasonset=set of season;;
1.2.8.File type descriptors.
Subset Pascal files are implemented as C++ file-streams and type descriptors are not
defined in this document.

16

