
Translator Design Lecture 20
CMSC 4173 Symbols and Types

 1

1.1. Symbol descriptors
Symbol descriptors contain a reference to the identifier for which the symbol is created, a
reference to the type descriptor and certain other information depending on the kind of the
symbol.

Kinds of symbols include constant, type, variable, function, and procedure. Explanations of
the symbol descriptors are given below.

1.1.1. Constant symbol descriptor
Constant symbol descriptors contain the attributes of named constants that appear
in a program.

The example below illustrates the structure of the predeclared Boolean constant
false.

Figure 1. Constant symbol descriptor for the Boolean constant false.

1.1.2. Type symbol descriptor
Type symbol descriptors are used to associate the name of a type with its attributes.
In Pascal boolean, char, integer, and real are names of the corresponding types. The
names are assigned by the compiler and, surprisingly, are not reserve words. It is

boolean type descriptor

typekind

tk

tk_boolean

size

int

1

alignment

int

1

t

Typ*

v

string

“0”

Constant

symkind

sk

sk_constant

id

string

“false”

t

Typ*

constant

Constant*

Constant Symbol Descriptor

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 2

possible but certainly not advisable1 to assign these names to other types or
constants. The facility to create named types is made available to the programmer
in the type definition section of a Pascal program.

Example: type integer.

integer type descriptor

typekind

tk

tk_integer

size

int

1

alignment

int

1

Type Symbol Descriptor

symkind

sk

sk_type

id

string

“ ”integer

t

Typ*

Figure 2. Type symbol descriptor for “integer”

Descriptors shown in Figures 1 and 2 are entered into the symbol table at lexical
level zero (0) by the compiler.

1 Once the names were assigned to other constants their original associations would not be
accessible and one might not be able to declare any more variables of the type whose name was
reassigned.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 3

Example: type index=1..10;
Type symbol descriptor

symkind identifier typ

Symkind string Typ*

sk_type index

Type descriptor

typkind

Typkind

size

int

alignment

int

hi lo

Sym* Sym*

tk_range 32 32

typkind size alignment

Typkind int int

Integer Type Descriptor

tk_integer 32 32

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“1”sk_constant “”

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“10”sk_constant “”

Figure 8. Type symbol descriptor for type index=1..10;

Figure 8 notes:
1. The identifier index is stored in the current namespace. What kind of

identifier is index? It is the name of a type.
2. The type descriptor for identifier index is a sub-range. Sub-ranges are

delimited by an upper bound (hi) and a lower bound (lo). The bounds are
constants. In this case, the constants are unnamed integer constants.

1.1.3. Variable symbol descriptor
Variable symbol descriptors are employed to record the attributes of local variables,
parameters, and fields in records. The common theme for a variable symbol
descriptor is the relative address. A variable is allocated storage relative to the
current activation record that contains storage for all variables local to the active
subprogram. Parameters are treated exactly as variables. Storage for parameters
is allocated from the current activation record. The address of a field is relative to

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 4

the start of the record and, therefore, can be managed in the same way as variables
and parameters.

Example: var c:char;r:real;

identifier

string

symkind

Symkind
typ

Typ*

address

int

Variable symbol descriptor

sk_variable “c” 0

identifier

string

symkind

Symkind
typ

Typ*

address

int

Variable symbol descriptor

sk_variable “r” 64

typkind

Typkind

size
int

alignment

int

Type descriptor

sk_char 8 8

typkind

Typkind

size
int

alignment

int

Type descriptor

sk_real 64 64
Figure 9. Symbol and type descriptors for the declarations var c:char;r:real;

Figure 9 notes:
1. First, a symbol descriptor for variable c is entered into the symbol table, then,

the symbol descriptor for variable r is entered.
2. Type descriptors for type char and real exist in the namespace at lexical level

zero (0): they were stored in the namespace by the compiler.
3. Since variable c was declared first, it is assigned the first available location at

relative (bit) address zero (0)2. Next, variable r was assigned the next
available location. Real variables can only be assigned locations in memory
that begin on even multiples of 8-byte boundaries. The next available
location for a real variable is not immediately after variable c, at location 8
bits (1 byte), but at 64 bits (8 bytes). The intervening space between variable
c and variable r is not used.

1.1.4. Function and procedure symbol descriptors

Function and procedure symbol descriptors record the number and type of
parameters and a function symbol descriptor records the return type. Type
descriptors of the parameters are stored in a list. If the symbol descriptor records
the attributes of a function the first type descriptor on the list is the return type as
shown in figure 10.

Subprogram symbol descriptors also record an address. The address recorded is an
instruction address not an address in an activation record. The instruction address
is the address of the first instruction in the subprogram.

2 In reality, zero is not the first available location for local variables. Storage for private
subprogram control is allocated before local variables including the static and dynamic links, the
old extreme pointer, the return address, and the return value. Storage for parameters and
compiler temporaries is also allocated before local variables.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 5

Example: function adr(c,a:integer):integer;

typkind size alignment

Typkind int int

Integer Type Descriptor

tk_integer 32 32

identifier

string

symkind

Symkind
parms

List*

address

int

Function symbol descriptor

sk_function “adr” 29

L

Typ**

size count

int int

3 3

List

0

1

2

return type

parameter c

parameter a

Figure 10. Symbol and type descriptors for function adr(c,a:integer):integer;

Figure 10 notes:
1. Function adr has an integer return type. Element zero of the list of types

records the return type of the function.
2. Function adr has two integer parameters, c and a. Elements one and two

record the parameters types of the parameters.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 6

Example: procedure swap(var m,w:real);

identifier

string

symkind

Symkind
parms

List*

address

int

Procedure symbol descriptor

sk_procedure “swap” 37

L

Typ**

size count

int int

2 2

List

typkind size alignment

Typkind int int

Real Type Descriptor

tk_real 64 64

typkind size alignment

Typkind int int

tk_pointer 32 32

typ

Typ*

Pointer type descriptor

0

1
parm w

parm m

Figure 11. Symbol and type descriptors for procedure swap(var m,w:real);

Figure 11 notes:
1. Procedure swap has two parameters, m and w. Both parameters have type

real.
2. Both parameters are reference parameters. The addresses of the values are

passed to procedure swap rather than a copy of the actual values. The type
of real reference parameters is real*, a pointer to a real.

1.2. Type descriptors

Type descriptors record the attributes of a type. Types are very different and so are type
descriptors. Symbol descriptors, because they describe identifiers have locality and must
be stored in a namespace hierarchy that accurately reflects scope. Type descriptors, on
the other hand, have no locality. They are not stored in namespaces. Access to types is
via identifiers. Type descriptors are accessed by references stored in symbol descriptors.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 7

Subsequent sections discuss kinds of type descriptors. Kinds of type descriptors include
scalar type descriptors for character, integer, and real types. An enumerated type is used
to record the attributes of type boolean in Pascal. Sub-range types are discussed next.
Explanations and examples of type descriptors, for arrays, records, pointers, sets, and
files are also given.

1.2.1. Character, integer, and real type descriptors
Character, integer, and real type descriptors have common attributes of size and
alignment. The attribute size specifies the number of bits occupied by a variable or
field of this type. The attribute alignment specifies where a variable of this type can
be allocated in memory. An IEEE 754 double-precision binary floating point value
can only be allocated on even multiples of 8-byte addresses. Thus, the alignment of
an IEEE 754 double-precision binary floating point value (real) is 64, or 64 bits, to
indicate that a variable of type real must begin on an 8-byte boundary. The units of
alignment, like size, are bits.

The diagrams in figure 12 illustrate the symbol and type descriptors that are entered
in the symbol table by the compiler at lexical level zero.

Character type symbol descriptor

Real type symbol descriptor

symkind

symkind

identifier

identifier

typ

typ

Symkind

Symkind

string

string

Typ*

Typ*

sk_type

sk_type

“char”

“real”

Integer type symbol descriptor

symkind identifier typ

Symkind string Typ*

sk_type “integer”

typkind

Typkind

size

int

alignment

int

Character type descriptor

sk_char 8 8

typkind

Typkind

size
int

alignment

int

Real type descriptor

sk_real 64 64

typkind

Typkind

size

int

alignment

int

Integer type descriptor

sk_integer 32 32

Figure 12. Symbol and type descriptors for types char, integer, and real.

1.2.2. Enumerated type descriptors and type boolean.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 8

Pascal type boolean is an example of the use of an enumerated type descriptor.
Pascal type boolean has two enumeration constants false and true. Constant
symbol descriptors are used in the type descriptor for the enumeration type as
shown in figure 13. Normally, the size and alignment of enumeration types and
their constants is 32-bits. However, in this case, for type boolean, the size and
alignment is 8-bits or one byte.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 9

Boolean type symbol descriptor

symkind identifier typ

Symkind string Typ*

sk_type “boolean”

typkind size alignment

Typkind int int

Cardinal Type Descriptor

tk_cardinal 8 8

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“1”“0” sk_constantsk_constant “true”“false”

L

Sym**

size count

int int

2 2

List

0

1

typkind

Typkind

size

int

alignment

int

tk_enum 8 8

L

List*

Enumerated type descriptor

Figure 13. Symbol and type descriptors for type boolean.

1.2.3. Range type descriptors.

Range type descriptors are employed to record the attributes of a sequence of some
type that is inherently ordered and discrete. Such types include cardinal (whole
numbers), character, integer, and enumerated. The example below illustrates a
range that includes the lower case letters.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 10

Example: type lowercase=’a’ .. ‘z’;

Type symbol descriptor

symkind identifier typ

Symkind string Typ*

sk_type “lowercase”

Type descriptor

typkind

Typkind

size

int

alignment

int

lo hi

Sym* Sym*

tk_range 8 8

typkind size alignment

Typkind int int

Character Type Descriptor

tk_character 8 8

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“z”sk_constant “”

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“a”sk_constant “”

Figure 14. Range symbol and type descriptors for a used-defined type for lower-case letters.

1.2.4. Array type descriptors.

Array type descriptors reference subordinate types that describe the set of values
that can be used as indexes for the array and the set of the values that can be used
for the elements of the array. Index values are more restricted than element values.
Index values must be discrete and must be a range of sequential values having
integer representations. Acceptable index types include ranges of cardinal values,
integer values, characters, boolean values, and enumerated values.

Element types can be used to construct multiply dimensioned arrays. Element types
are unrestricted and can be an array type.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 11

Two examples are given for arrays, 1) an array with a single dimension having a
range of characters as the index type and 2) an array having two dimensions where
ranges of cardinal values are employed as the index types.

Example: type carry=array[‘a’..’e’] of integer;

Figure 15. Symbol and type descriptors for the type definition type carry=array[‘a’..’e’] of

integer.

Integer type descriptor

typkind size alignment

Typkind int int

tk_integer 32 32

Type descriptor

typkind

Typkind

size

int

alignment

int

lo hi

Sym* Sym*

tk_range 8 8

typkind size alignment

Typkind int int

Character Type Descriptor

tk_character 8 8

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“e”sk_constant “”

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“a”sk_constant “”

typkind

Typkind

size

int

alignment

int

index element

Typ* Typ*

Array type descriptor

160 64

identifier

string

symkind

Symkind

typ

Typ*

sk_type “carry”

Type symbol descriptor

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 12

Example: type carry=array[‘a’..’e’] of integer;

Real type descriptor

typkind size alignment

Typkind int int

tk_real 64 64

typkind

Typkind

size

int

alignment

int

index element

Typ* Typ*

Array type descriptor

typkind

Typkind

size

int

alignment

int

index element

Typ* Typ*

Array type descriptor

Type descriptor

typkind

Typkind

size

int

alignment

int

lo hi

Sym* Sym*

tk_range 8 8

typkind size alignment

Typkind int int

Integer Type Descriptor

tk_integer 32 32

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“9”sk_constant “”

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“0”sk_constant “”

identifier

string

symkind

Symkind

typ

Typ*

sk_type “rmatrix”

Type symbol descriptor

identifier

string

symkind

Symkind

typ

Typ*

sk_type “ndx”

Type symbol descriptor

Figure 16. Symbol and type descriptors for the type definitions

type ndx=0..9; rmatrix=array[ndx,ndx] of real;

1.2.5. Record type descriptors.
A record type descriptors contains a list of fields for the record. Each field is a
variable symbol descriptor. Fields are recorded in the order in which they are
declared.

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 13

Example: type complex=record re,im:real end{complex};

identifier

string

symkind

Symkind
typ

Typ*

address

int

Variable symbol descriptor

sk_variable “im” 64

identifier

string

symkind

Symkind
typ

Typ*

address

int

Variable symbol descriptor

sk_variable “re” 0

L

Sym**

size count

int int

2 2

List

typkind size alignment

Typkind int int

Real Type Descriptor

tk_real 64 64

identifier

string

symkind

Symkind

sk_type “complex”

typ

Typ*

Type symbol descriptor

typkind

Typkind

tk_record

L

List*

Record type descriptor

int int

size alignment

128 64

0

1

Figure 17. Symbol and type descriptors for the type definitions

type complex=record re,im:real end{complex};

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 14

1.2.6. Pointer type descriptors.
Pointer type descriptors contain the attributes of a pointer or an address. An
address occupies 32 bits and is aligned on 4-byte boundaries.
Example:
type

pelement=^element;
element=record prev:pelement; data:integer end{element};

identifier

string

symkind

Symkind
typ

Typ*

address

int

Variable symbol descriptor

sk_variable “data” 32

identifier

string

symkind

Symkind
typ

Typ*

address

int

Variable symbol descriptor

sk_variable “prev” 0

L

Sym**

size count

int int

2 2

List

typkind size alignment

Typkind int int

Integer Type Descriptor

tk_real 32 32

identifier

string

symkind

Symkind

sk_type “element”

typ

Typ*

Type symbol descriptor

identifier

string

symkind

Symkind

sk_type “pelement”

typ

Typ*

Type symbol descriptor

typkind

Typkind

tk_record

L

List*

Record type descriptor

int int

size alignment

64 64

0

1

typkind

Typkind

size

int int

alignment

Pointer type descriptor

typ

Typ*

tk_pointer 32 32
Figure 18. Symbol and type descriptors for the type definitions type pelement=^element;

element=record prev:pelement; data:integer end{element};

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 15

When pointers reference a record, the record is named as an incomplete type as in
the example below. Type element is not yet defined in the definition of type
pelement. Symbol table management must allow for the entry of types that are not
yet defined but only named. Symbol table management must allow type symbols
to be changed after their names are entered.

1.2.7. Set type descriptors.
Sets are implemented in an array of bits, one bit for each element in the set. If the
bit is set to true, element is present in the set. If the bit is set to false, the set does
not include that element.

In the example below, a variable of type seasonset occupies 64 bits. Bits 0, 1, 2, and
3 are used to represent the set. Bit 0 represents the presence or absence of the
element spring. Bit 1 represents the element summer. In the same way, bits 2 and
3 represent elements autumn and winter.

The base type of a set must be discrete and its cardinality cannot exceed 64.
Example:
type season=(spring,summer,autumn,winter); seasonset=set of season;

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“2”sk_constant “autumn”

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“0”sk_constant “spring”

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“1”sk_constant “summer”

identifier

string

symkind

Symkind
value

string

typ

Typ*

Constant Symbol Descriptor

“3”sk_constant “winter”

typkind size alignment

Typkind int int

Integer Type Descriptor

tk_integer 32 32

L

Sym**

size count

int int

4 4

List

identifier

string

symkind

Symkind

sk_type “season”

typ

Typ*

Type symbol descriptor

identifier

string

symkind

Symkind

sk_type “seasonset”

typ

Typ*

Type symbol descriptor

typkind

Typkind

tk_enum

L

List*

Enum type descriptor

int int

size alignment

64 64

typkind

Typkind

tk_set

typ

Typ*

Set type descriptor

int int

size alignment

64 64

0

1

2

3

Figure 19. Symbol and type descriptors for the type definitions

type season=(spring,summer,autumn,winter);

Translator Design Lecture 20
CMSC 4173 Symbols and Types

 16

seasonset=set of season;;
1.2.8. File type descriptors.

Subset Pascal files are implemented as C++ file-streams and type descriptors are not
defined in this document.

