Translator Design Lecture 18
CMSC 4173 Symbol Table Overview

Overview. A symbol table is created for a compilation unit. A compilation unit is usually a single source
file but may include any number of other files included into the source file by directives in the source file.

The symbol table is two maps.
1. The symbol table maps identifiers to a relative address.
2. The symbol table maps identifiers to their type.

Locality. Locality serves to distinguish duplicate identifiers. The usual technique is that a reference to an
identifier that is defined in two or more separate locations is to assign the reference to the nearest

definition.

For example, consider the following Subset Pascal program in figure 1.

1. program p00;
2. var iiinteger;
3. procedure p
4, (b:boolean;c:char);
5. var r:real;
6. begin{p}
7. end{p};
8. function f
9. (izinteger;r:real):real;
10. var b:boolean;
11. begin{f}
12. f:=1.602e-19
13. end{f};
14. begin{p00}
15. end{p00}.

Figure 1. program p01.

Variable i is defined in two locations, on line 2 and again as a parameter on line 9. The nearest declaration
of variable i is the one selected if it appears in a statement in program p00. Inside function f, variable i as
declared on line 9 is selected. Everywhere else in program p00, the declaration of variable i on line 2 is
selected.

The search for an identifier begins with the current locality and proceeds through all the enclosing
localities. Each locality defines a namespace. All identifiers in a namespace are unique. In the example
above there are four localities. There is the base locality of predefined identifiers that includes the names
of types, boolean, char, integer, real, and others. The program name, p00, is also stored in this locality.

There is a locality defined by the program that includes identifiers, i, a variable (line 2) p, a procedure (line
3), and f, a function (line 8).

There is a locality for procedure p that includes parameters b and c and variable r.
There is a locality for function f that includes parameters i and r and variable b.

A stack can be used to facilitate the process of searching localities as shown in figure 2. The current
locality is on top of the stack. Enclosing localities appear under the current locality.



Translator Design

Lecture 18

CMSC 4173 Symbol Table Overview
Lexical Level Namespace Stack Index Identifiers
2 p 2 b,cr
1 p0o 1 i p, f
0 predefined 0 boolean, char, integer,
real, false, true, ...
Figure 2. 1 Stack of Localities at line 6
Lexical Level Namespace Stack Index Identifiers
2 f 2 ir,b
1 p00 1 ip f
0 predefined 0 boolean, char, integer,

real, false, true, ...

Figure 2.2 Stack of Localities at line 12




Translator Design

Cs 4173

Predefined Types:

Lecture 25
Symbol Table Types (Typ.h)

Boolean Character_8
typekind size alignment typekind size alignment
Typekind int int Typekind int int
tk_boolean 8 8 tk_character 8 8
Figure 3.1 Typical Scalar Types, Boolean and Character
Integer_32 Real_32
typekind size alignment typekind size alignment
Typekind int int Typekind int int
tk_integer 32 32 tk_real 32 32

Figure 3.2 Typical Scalar Types, Integer and Real

Scalar and Subrange Types:

Range

lo

hi

ConstantSymbol*

ConstantSymbol™|

ConstantSymbol
symkind identifier typ lexicallevel value
Symkind string Typ* int string
sk_constant “ 1 “10”
ConstantSymbol
symkind identifier t))p lexicallevel value
Symkind string Typ* int string
sk_constant “ ‘ 1 “1”
Integer_32
typekind size alignment
Typekind int int
tk_integer 32 32

Figure 3.3 Range Types

var ¢:1..10;




Translator Design Lecture 25

CS 4173 Symbol Table Types (Typ.h)
Structured Types:
Array
ityp etyp
Typ* Typ*
Range Real_32
lo hi typekind size alignment
ConstantSymbol*|ConstantSymbol* Typekind int int
tk_real 32 32
ConstantSymbol

symkind identifier typ lexicallevel value
Symkind string Typ* int string

sk_constant “o 1 “10”

ConstantSymbol

symkind identifier t))p lexicallevel value
Symkind string Typ* int string

sk_constant “ 1 “1”

Integer_32

typekind size alignment
Typekind int int
tk_integer 32 32

Figure 3.4 Array Types
var g:array[1..10] of real;



Translator Design Lecture 25
CS 4173 Symbol Table Symbols (Sym.h)

Variable Symbols:



