
Translator Design Lecture 18
CMSC 4173 Symbol Table Overview

 1

Overview. A symbol table is created for a compilation unit. A compilation unit is usually a single source
file but may include any number of other files included into the source file by directives in the source file.

The symbol table is two maps.

1. The symbol table maps identifiers to a relative address.
2. The symbol table maps identifiers to their type.

Locality. Locality serves to distinguish duplicate identifiers. The usual technique is that a reference to an
identifier that is defined in two or more separate locations is to assign the reference to the nearest
definition.

For example, consider the following Subset Pascal program in figure 1.

Figure 1. program p01.

Variable i is defined in two locations, on line 2 and again as a parameter on line 9. The nearest declaration
of variable i is the one selected if it appears in a statement in program p00. Inside function f, variable i as
declared on line 9 is selected. Everywhere else in program p00, the declaration of variable i on line 2 is
selected.

The search for an identifier begins with the current locality and proceeds through all the enclosing
localities. Each locality defines a namespace. All identifiers in a namespace are unique. In the example
above there are four localities. There is the base locality of predefined identifiers that includes the names
of types, boolean, char, integer, real, and others. The program name, p00, is also stored in this locality.

There is a locality defined by the program that includes identifiers, i, a variable (line 2) p, a procedure (line
3), and f, a function (line 8).

There is a locality for procedure p that includes parameters b and c and variable r.

There is a locality for function f that includes parameters i and r and variable b.

A stack can be used to facilitate the process of searching localities as shown in figure 2. The current
locality is on top of the stack. Enclosing localities appear under the current locality.

1. program p00;
2. var i:integer;
3. procedure p
4. (b:boolean;c:char);
5. var r:real;
6. begin{p}
7. end{p};
8. function f
9. (i:integer;r:real):real;

10. var b:boolean;
11. begin{f}
12. f:=1.602e-19
13. end{f};
14. begin{p00}
15. end{p00}.

Translator Design Lecture 18
CMSC 4173 Symbol Table Overview

 2

Lexical Level Namespace Stack Index Identifiers

2 p 2 b, c, r
1 p00 1 i, p, f
0 predefined 0 boolean, char, integer,

real, false, true, …
Figure 2. 1 Stack of Localities at line 6

Lexical Level Namespace Stack Index Identifiers

2 f 2 i, r, b
1 p00 1 i, p, f
0 predefined 0 boolean, char, integer,

real, false, true, …
Figure 2.2 Stack of Localities at line 12

Translator Design Lecture 25
CS 4173 Symbol Table Types (Typ.h)

 3

Predefined Types:

Boolean

typekind size alignment

Typekind int int

tk_boolean 8 8

Character_8

typekind size alignment

Typekind int int

tk_character 8 8

Figure 3.1 Typical Scalar Types, Boolean and Character

Integer_32

typekind size alignment

Typekind int int

tk_integer 32 32

Real_32

typekind size alignment

Typekind int int

tk_real 32 32

Figure 3.2 Typical Scalar Types, Integer and Real
Scalar and Subrange Types:

Integer_32

typekind size alignment

Typekind int int

tk_integer 32 32

Range

lo hi

ConstantSymbol*ConstantSymbol*

symkind

symkind

identifier

identifier

typ

typ

lexicallevel

lexicallevel

value

value

Symkind

Symkind

string

string

Typ*

Typ*

int

int

string

string

ConstantSymbol

ConstantSymbol

sk_constant “” 1 “10”

“1”1“”sk_constant

Figure 3.3 Range Types

var a:1..10;

Translator Design Lecture 25
CS 4173 Symbol Table Types (Typ.h)

 4

Structured Types:

Integer_32

typekind size alignment

Typekind int int

tk_integer 32 32

Real_32

typekind size alignment

Typekind int int

tk_real 32 32

Range

Array

lo

ityp

hi

etyp

ConstantSymbol*

Typ*

ConstantSymbol*

Typ*

symkind

symkind

identifier

identifier

typ

typ

lexicallevel

lexicallevel

value

value

Symkind

Symkind

string

string

Typ*

Typ*

int

int

string

string

ConstantSymbol

ConstantSymbol

sk_constant “” 1 “10”

“1”1“”sk_constant

Figure 3.4 Array Types

var a:array[1..10] of real;

Translator Design Lecture 25
CS 4173 Symbol Table Symbols (Sym.h)

 5

Variable Symbols:

