Translator Design Lecture 17
CMSC 4173 a03 Overview

e The goal of project a03 is to produce a P-Code executable program that can be executed
by the P-Machine.
e A P-Code executable program is formatted according to the specifications given by the P-
Machine Executable Format (http://cs2.uco.edu/~trt/cs4173/pexecutable.pdf)
e A P-Machine Executable Program file is NOT a text file: it is a binary file. The executable
program cannot be read by cin nor printed by cout.
e A P-Machine Executable Program has three (3) parts
1. Adirectory providing access to the remaining components
2. Constants, including integer, real, set, and string constants
3. P-Code instruction array that contains the actual program

Directory:

index of first instruction

stack size

p-code instruction array offset

p-code instruction array length

integer constants offset

integer constants length

real constants offset

directory

real constants length

set constants offset

set constants length

string constants offset
v string constants length

string constants

wv
2
§ set constants
1}
S real constants <
o .
v integer constants
:; p-code instruction array

Figure 1. Anatomy of a P-Machine Executable Program File
String Constants:
String constants are stored in an array. String constants vary in size. P-Machine strings have
the same form as C-programming language strings. Strings consist of a sequence of characters
terminated by a character whose ordinal value is zero. P-Machine instructions reference
string constants by using the index of the first character of the string.

Two strings are shown in Figure 2. The string “candy" is followed by the string "is." Together,
both strings require nine (9) characters including their terminators.

string constants length

<« »

index
0 1 8

ABDENGNEE

8 bits —» '«— 1 byte
Figure 2. Anatomy of string constants

http://cs2.uco.edu/~trt/cs4173/pexecutable.pdf

Translator Design Lecture 17
CMSC 4173 a03 Overview

Set Constants:
Set constants are stored in an array. Each set occupies 64 bits. The number of sets, n, is given
by n=1/8, where I; is the value of the field labeled "set constants length" in the directory.

64 bits
index 8 bytes
0 A
1 set
It | constants
length
n-1
\

Figure 3. Anatomy of set constants

1. Real constants

Real constants are stored in an array. Each real number occupies 64 bits. The number of real
constants, n,, is given by, n,=/,/8, where I, is the value of the field labeled "real constants length"
in directory. Real constants are stored in IEEE 754 binary double format.

64 bits
index 8 bytes
0 A
1 real
I | constants
length
n-1
y

Figure 4. Anatomy of real constants

2. Integer constants
Integer constants are stored in an array. A standard integer occupies four bytes (32 bits) on Intel
Computers used by the Department of Computer Science at the University of Central Oklahoma.

The number of integers, N;is given by n; = l;/4 where |,is the value stored in the directory in
the field labeled "integer constants length."

32 bits
index 4 bytes
0 A
1 integer
Ii constants
length
n-1
\

Translator Design Lecture 17
CMSC 4173 a03 Overview

Figure 5. Anatomy of integer constants

P-Code instruction array
P-Code instructions are stored in an array. Each P-Code instruction occupies 4 bytes (32 bits).
The number of P-Code instructions, np, is given by, n,=l,/4, where I, is the value of the field
labeled "P-Code instructions array length" in the directory.

32 bits
index 4 bytes
0 opcode operand 1 (p) operand 2 (q) A
1 P-Code
| Instruction
P | Array
Length

m | | v

Figure 6. Anatomy of the P-Code instruction array

P-Code instructions consist of three fields, an operation code (opcode) followed by two
operands. Operands depend on the opcode.

P-Code instructions occupy 32 bits or 4 bytes. The opcode is stored in the first byte of the
instruction. The first operand, called p, is stored in the second byte and the second operand,
called g, occupies the remaining two bytes as shown in Figure 7.

8 8 16
I opcode | operand 1 (p) | operand 2 (q) I

Figure 7. Anatomy of a P-Code instruction
The opcode and both operands are unsigned integers.

Writing the P-Machine Executable Program File Directory:

/1

//Function Write writes the internal (unformatted) representation of the
//directory to file f.
//

void PasmDirectory::Write(FILE* f)
{ fwrite(this,sizeof(PasmDirectory),1,f);

}

Transl
CMSC

class PasmDirectory {

ator Design
4173

int start;
int ssize;
int iaoffset;
int iasize;
int icoffset;
int icsize;
int rcoffset;
int rcsize;
int scoffset;
int scsize;
int tcoffset;
int tcsize;

public:

b

PasmDirectory();
~PasmDirectory();
void StoreSizes

(int sts
,int ias
,intjcs
,intrcs
,int scs
,int tcs

);

//Index of the first instruction
//Stack size

//Instruction array offset
//Instruction array size
//Integer constants offset
//Integer constants size
//Real constants offset
//Real constants size
//String constants offset
//String constants size
//Set constants offset
//Set constants size

//Stores sizes of regions specified in the
//directory

//Stack size

//P-Code instruction array size
//Integer constants size

//Real constants size

//String constants size

//Set constants size

void Print(ostream& 0);

void Write(FILE* f);
void Read(FILE* f);

Writing the P-Machine Executable Program Integer Constants:

/1

//Function Write writes the binary image of theinstruction array to file f

/1

void PasmintegerConstants::Write(FILE* f)
{ fwrite(l,sizeof(int),count,f);

}

Writing the P-Machine Executable Program P-Code Instruction Array:

//

//Function Write writes the binary image of theinstruction array to file f

//

void PasminstructionArray::Write(FILE* f)
{ for (int a=0;a<count;a++) IA[a].Write(f);

}

Lecture 17
a03 Overview

