
Translator Design Lecture 17
CMSC 4173 a03 Overview

 1

 The goal of project a03 is to produce a P-Code executable program that can be executed
by the P-Machine.

 A P-Code executable program is formatted according to the specifications given by the P-
Machine Executable Format (http://cs2.uco.edu/~trt/cs4173/pexecutable.pdf)

 A P-Machine Executable Program file is NOT a text file: it is a binary file. The executable
program cannot be read by cin nor printed by cout.

 A P-Machine Executable Program has three (3) parts
1. A directory providing access to the remaining components
2. Constants, including integer, real, set, and string constants
3. P-Code instruction array that contains the actual program

Directory:

index of first instruction

stack size

p-code instruction array offset

p-code instruction array length

integer constants offset

real constants offset

set constants offset

string constants offset

integer constants length

real constants length

set constants length

string constants length

string constants

set constants

real constants

integer constants

p-code instruction array

co
n

ts
ta

nt
s

di
re

ct
o

ry

.

Figure 1. Anatomy of a P-Machine Executable Program File
String Constants:

String constants are stored in an array. String constants vary in size. P-Machine strings have
the same form as C-programming language strings. Strings consist of a sequence of characters
terminated by a character whose ordinal value is zero. P-Machine instructions reference
string constants by using the index of the first character of the string.

Two strings are shown in Figure 2. The string “candy" is followed by the string "is." Together,
both strings require nine (9) characters including their terminators.

c a n d y i s0 0

0 1 8
index

1 byte8 bits

string constants length

Figure 2. Anatomy of string constants

http://cs2.uco.edu/~trt/cs4173/pexecutable.pdf

Translator Design Lecture 17
CMSC 4173 a03 Overview

 2

Set Constants:
Set constants are stored in an array. Each set occupies 64 bits. The number of sets, nt, is given
by nt=lt/8, where lt is the value of the field labeled "set constants length" in the directory.

8 bytes

64 bits

0

1

n-1

index

set
constants

length
lt

Figure 3. Anatomy of set constants

1. Real constants
Real constants are stored in an array. Each real number occupies 64 bits. The number of real
constants, nr, is given by, nr=lr/8, where lr is the value of the field labeled "real constants length"
in directory. Real constants are stored in IEEE 754 binary double format.

8 bytes

64 bits

0

1

n-1

index

real
constants

length
lr

Figure 4. Anatomy of real constants

2. Integer constants
Integer constants are stored in an array. A standard integer occupies four bytes (32 bits) on Intel
Computers used by the Department of Computer Science at the University of Central Oklahoma.

The number of integers, in is given by 𝑛𝑖 = 𝑙𝑖 4⁄ where il is the value stored in the directory in

the field labeled "integer constants length."

4 bytes

32 bits

0

1

n-1

index

integer
constants

length
li

Translator Design Lecture 17
CMSC 4173 a03 Overview

 3

Figure 5. Anatomy of integer constants

P-Code instruction array

P-Code instructions are stored in an array. Each P-Code instruction occupies 4 bytes (32 bits).
The number of P-Code instructions, np, is given by, np=lp/4, where lp is the value of the field
labeled "P-Code instructions array length" in the directory.

4 bytes

32 bits

0

1

n-1

index

P-Code

Instruction
Array
Length

lp

opcode operand 1 (p) operand 2 (q)

Figure 6. Anatomy of the P-Code instruction array

P-Code instructions consist of three fields, an operation code (opcode) followed by two
operands. Operands depend on the opcode.

P-Code instructions occupy 32 bits or 4 bytes. The opcode is stored in the first byte of the
instruction. The first operand, called p, is stored in the second byte and the second operand,
called q, occupies the remaining two bytes as shown in Figure 7.

opcode operand 1 (p) operand 2 (q)

8 8 16

Figure 7. Anatomy of a P-Code instruction

The opcode and both operands are unsigned integers.

Writing the P-Machine Executable Program File Directory:
//--
//Function Write writes the internal (unformatted) representation of the
//directory to file f.
//--

void PasmDirectory::Write(FILE* f)
{ fwrite(this,sizeof(PasmDirectory),1,f);
}

Translator Design Lecture 17
CMSC 4173 a03 Overview

 4

class PasmDirectory {
 int start; //Index of the first instruction
 int ssize; //Stack size
 int iaoffset; //Instruction array offset
 int iasize; //Instruction array size
 int icoffset; //Integer constants offset
 int icsize; //Integer constants size
 int rcoffset; //Real constants offset
 int rcsize; //Real constants size
 int scoffset; //String constants offset
 int scsize; //String constants size
 int tcoffset; //Set constants offset
 int tcsize; //Set constants size
public:
 PasmDirectory();
 ~PasmDirectory();
 void StoreSizes //Stores sizes of regions specified in the
 //directory
 (int sts //Stack size
 ,int ias //P-Code instruction array size
 ,int ics //Integer constants size
 ,int rcs //Real constants size
 ,int scs //String constants size
 ,int tcs //Set constants size
);
 void Print(ostream& o);
 void Write(FILE* f);
 void Read(FILE* f);
};

Writing the P-Machine Executable Program Integer Constants:

//--
//Function Write writes the binary image of theinstruction array to file f
//--
void PasmIntegerConstants::Write(FILE* f)
{ fwrite(I,sizeof(int),count,f);
}

Writing the P-Machine Executable Program P-Code Instruction Array:

//--
//Function Write writes the binary image of theinstruction array to file f
//--
void PasmInstructionArray::Write(FILE* f)
{ for (int a=0;a<count;a++) IA[a].Write(f);
}

