
Translator Design Lecture 16
CMSC 4173 p03 Overview

 1

Whenever the parser reduces a rule, it executes user C (or C++) code associated with the rule,
known as the rule’s action. The action appears in the braces after the end of the rule, before the
semicolon or vertical bar. The action code can refer to the values of the right-hand side symbols
as $1, $2, …, and can set the value of the left-hand side by setting $$.

Example:
%token NAME NUMBER
%%
statement: NAME ‘=’ expression
 | expression {cout << ($1) << endl;}
 ;
expression: expression ‘+’ NUMBER {$$=$1+$3;}
 | expression ‘-‘ NUMBER {$$=$1-$3;}
 | NUMBER {$$=$1;}
 ;

1. int TokenMgr(int t)
2. { int tc=t;
3. if (t==ID) {
4. char s[1024];
5. for (int a=0;a<strlen(yytext)&&a<1024;a++) s[a]=tolower(yytext[a]);
6. s[strlen(yytext)]=0;
7. yylval.token=new string(s);
8. tc=RW[s];
9. if (tc==0) tc=t;
10. } else {
11. yylval.token=new string(yytext);
12. }
13. PrintToken(tfs,tc,line,col);
14. col+=yyleng;
15. return tc;
16. }

Figure 1. Function TokenMgr

Notes:
1. Function TokenMgr is a function located in file paslex.l. Function TokenMgr is called by the

scanner for every token (except comments, and white space).
2. Note lines 7 and 11. Member token of struct yylval is assigned a pointer to all tokens

recognized by the scanner.

Translator Design Lecture 16
CMSC 4173 p03 Overview

 2

%{
//---
//C++ inlcude files
//---
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;
//---
//Supporting utilities
//---
#include "SList.h"
//---
//Application inlcude files
//---
#include "paslex.h"
#include "paspar.h"
//---
//Functions
//---
void yyerror(char* m);
//---
//Externals
//---
extern ofstream tfs;
extern int line;
extern int col;
//---
%}
%union {
 string* token;
 SList* slist;
}

Figure 2. File paspar.y

Translator Design Lecture 16
CMSC 4173 p03 Overview

 3

Code fragment Discussion
#include "List.h" Defines a list template that can be implemented as a list of

strings that are used to store the strings of an identifier_list.
extern int line;
extern int col;

The line and column are defined, stored, and computed in file
paslex.l. These declarations make line and col available to all
functions in file paspar.y.

%union {
 string* token;
 List<string>* strlist;
}

This definition, given in the syntax of yacc, defines semantic
variable types token and slist. By associating these types with
terminal and non-terminal grammar symbols, the compiler
designer can extract and create semantic information.

%token <token> TOKEN_BEGIN
%token <token> PLUS
…
%token <token> REALIT
%token <token> CHRLIT
%token <token> TOKEN_END

%type <strlist> identifier_list

Figure 2. File paspar.y (continued)

Code fragment Discussion
%token <token> PLUS Associates type “token” a pointer to a string with the

terminal symbol PLUS, +.
%type <strlist> identifier_list

Associates type “strlist”, a pointer to a list of strings with the
nonterminal symbol identifier_list.

Translator Design Lecture 16
CMSC 4173 p03 Overview

 4

%%
program:
 PROGRAM ID program_parameters SEMICOLON
 declarations
 subprogram_declarations
 compound_statement
 PERIOD
 {tfs << endl << "program -> "
 << "PROGRAM ID(" << (*$2) << ") program_parameters ; "
 << "declarations subprogram_declarations compound_statement .";
 }
program_parameters:
 {tfs << endl << "program_parameters -> empty";}
program_parameters:
 LPAREN program_parameter_list RPAREN
 {tfs << endl << "program_parameters -> (program_parameter_list)";}
program_parameter_list:
 identifier_list
 {tfs << endl << "program_parameter_list -> identifier_list" << (*$1) ;}
identifier_list:
 ID
 {tfs << endl << "identifier_list -> ID(" << (*$1) << ")";
 $$=new SList;
 $$->Insert(*$1);
 }
identifier_list:
 identifier_list COMMA ID
 {tfs << endl << "identifier_list -> " << (*$1) << " , ID(" << (*$3) << ")";
 $1->Insert(*$3);
 $$=$1;
 }
…
%%

Figure 2. File paspar.y (continued)

Code fragment Discussion
program_parameter_list:
 identifier_list
 {tfs << endl << "program_parameter_list ->
identifier_list" << (*$1) ;}

Print the identifiers in the
program_parameter_list. $1 is a yacc pseudo
variable having type “slist”, pointer to a list of
strings. The (*$1) invokes the operator
overloaded function that print the entire list
in class SList.

Translator Design Lecture 16
CMSC 4173 p03 Overview

 5

Code fragment Discussion
identifier_list:
 ID
 {tfs << endl << "identifier_list -> ID(" <<
(*$1) << ")";
 $$=new SList;
 $$->Insert(*$1);
 }

Print the ID since it is a pointer to a string. It
is the new string created in file paslex.l
Create an empty list of strings. Associate the
empty list of strings with nonterminal
identifier_list.
Insert the first string in the list.

identifier_list:
 identifier_list COMMA ID
 {tfs << endl << "identifier_list -> " << (*$1)
<< " , ID(" << (*$3) << ")";
 $1->Insert(*$3);
 $$=$1;
 }

Print the ID since it is a pointer to a string. It
is the new string created in file paslex.l
Insert the second and subsequent strings in
the list.
Copy the pointer from the identifier list on
the right hand side to the left hand side.

//---
//User function section
//---
void yyerror(char* m)
{ cout << endl
 << "line(" << line << ") col(" << col << ") " << m;
 cout << endl;
}

Figure 2. File paspar.y (continued)

Code fragment Discussion
void yyerror(char* m)
{ cout << endl
 << "line(" << line << ") col(" << col << ") "
<< m;
 cout << endl;
}

Function yyerror is called by the parser,
yyparse, when the input is not a sentence in
the grammar, a syntax error. Note that
global variables line and col are employed to
print the last known location.

