

The construction of both top-down and bottom-up parsers is aided by two functions $FIRST()$ and $FOLLOW()$.

Define $FIRST(\alpha)$, where α is any string of grammar symbols, to be the set of **terminals** that begin strings derived from α . If $\alpha \Rightarrow^* \epsilon$, then ϵ is also in $FIRST(\alpha)$.

To compute $FIRST(X)$

1. If X is a terminal, then $FIRST(X) = \{X\}$
2. If X is a nonterminal and $X \rightarrow Y_1 Y_2 \dots Y_k$ is a production, then place a in $FIRST(X)$ if for some i , a is in $FIRST(Y_i)$, and ϵ is all of $FIRST(Y_1), \dots, FIRST(Y_{i-1})$; that is: $Y_1 \dots Y_{i-1} \Rightarrow^* \epsilon$. If ϵ is in $FIRST(Y_j)$ for all $j = 1, 2, \dots, k$, then add ϵ to $FIRST(X)$. For example, everything in $FIRST(Y_1)$ is surely in $FIRST(X)$. If Y_1 does not derive ϵ , then we add nothing more to $FIRST(X)$ but if $Y_1 \Rightarrow^* \epsilon$, then we add $FIRST(Y_2)$, and so on.
3. If $X \rightarrow \epsilon$ is a production, then add ϵ to $FIRST(X)$.

To compute $FOLLOW(A)$

1. Place $\$$ in $FOLLOW(S)$ where S is the start symbol, and $\$$ is the input right endmarker.
2. If there is a production $A \rightarrow \alpha B \beta$, then everything in $FIRST(\beta)$ except ϵ is in $FOLLOW(B)$.
3. If there is a production $A \rightarrow \alpha B$, or a production $A \rightarrow \alpha B \beta$, where $FIRST(\beta)$ contains ϵ , then everything in $FOLLOW(A)$ is in $FOLLOW(B)$.

Consider the grammar.

	<i>left side</i>	<i>right side</i>
1	E	$\rightarrow E + T$
2	E	$\rightarrow T$
3	T	$\rightarrow T^* F$
4	T	$\rightarrow F$
5	F	$\rightarrow (E)$
6	F	$\rightarrow \text{id}$

Table 1. Set of productions expressions

Step	Action	Justification
1	$FIRST(E) = FIRST(T)$	FIRST, rule 2
2	$FIRST(T) = FIRST(F)$	FIRST, rule 2
3	$FIRST(F) = \{\text{id}\}$	FIRST, rule 1 applied to productions 5 and 6

Step	Action	Justification
1	$FOLLOW(E) = \$$	FOLLOW, rule 1
2	$FOLLOW(E) = FOLLOW(E) \cup \{\text{id}\} = \{\$, \text{id}\}$	FOLLOW, rule 2, productions 1 and 5
3	$FOLLOW(T) = FOLLOW(E) = \{\$, +, \}\}$	FOLLOW, rule 2, production 2
4	$FOLLOW(T) = FOLLOW(T) \cup \{*\} = \{\$, *, +, \}\}$	FOLLOW, rule 2, production 3
5	$FOLLOW(F) = FOLLOW(T) = \{\$, *, +, \}\}$	FOLLOW, rule 3, production 4

	$FIRST()$	$FOLLOW()$
E	$\{(), id\}$	$\{\$, +,)\}$
F	$\{(), id\}$	$\{\$, +, *,)\}$
T	$\{(), id\}$	$\{\$, +, *, ,)\}$