
Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

 1

SLR – “Simple LR”

An LR(0) item (item for short) of a grammar G is a production of G with a dot at some position of
the right side. Thus, production XYZA → yields the four items

𝐴𝐴 → •𝑋𝑋𝑋𝑋𝑋𝑋
𝐴𝐴 → 𝑋𝑋•𝑌𝑌𝑌𝑌
𝐴𝐴 → 𝑋𝑋𝑋𝑋•𝑍𝑍
𝐴𝐴 → 𝑋𝑋𝑋𝑋𝑋𝑋•

The production 𝐴𝐴 →∈ generates only one item, 𝐴𝐴 → •.

The central idea in the SLR method is first to construct from the grammar a deterministic finite
automaton to recognize viable prefixes. We group items together in sets, which give rise to the
states of the SLR parser. The items can be viewed as the states of an NFA recognizing viable
prefixes, and the “grouping together” is really the subset construction discussed earlier.

To construct the canonical LR(0) collection for a grammar, we define an augmented grammar for
and two functions, closure and goto.

If 𝐺𝐺is a grammar with start symbol 𝑆𝑆, then 𝐺𝐺′the augmented grammar for 𝐺𝐺 is 𝐺𝐺with a new start
symbol 𝑆𝑆′and production 𝑆𝑆′ → 𝑆𝑆. The purpose of this new starting production is to indicate to the
parser when it should stop parsing and announce acceptance of the input. Acceptance occurs
only when the parser is about to reduce by 𝑆𝑆′ → 𝑆𝑆

The Closure Operation

If 𝐼𝐼is a set of items for a grammar 𝐺𝐺 then 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼) is the set of items constructed from 𝐼𝐼 by the
two rules:

1. Initially, every item in 𝐼𝐼 is added to 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼)
2. If 𝐴𝐴 → 𝛼𝛼•𝐵𝐵𝐵𝐵is in 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼) and 𝐵𝐵 → 𝛾𝛾is a production, then add the item 𝐵𝐵 → •𝛾𝛾 to 𝐼𝐼 if

it is not already there. We apply this rule until no more new items can be added to
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼).

Example 4.34

 E′ → E
 E → E + T
 E → T
 T → T * F
 T → F
 F → (E)
 F → id

Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

 2

If 𝐼𝐼 is the set of one item {𝐸𝐸′ → •𝐸𝐸 } then 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼) contains the items
 E′ → • E
 E → • E + T
 E → • T
 T → • T * F
 T → • F
 F → • (E)
 F → • id

Here, 𝐸𝐸′ → •𝐸𝐸 is put in 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼) by rule (1). Since there is an 𝐸𝐸 immediately to the right of a
dot, by rule (2) we add the E-productions with dots at the left end, that is,𝐸𝐸 → •𝐸𝐸 + 𝑇𝑇and 𝐸𝐸 →
•𝑇𝑇 Now there is a 𝑇𝑇 immediately to the right of a dot, so we add𝑇𝑇 → •𝑇𝑇 ∗ 𝐹𝐹 and 𝑇𝑇 → •𝐹𝐹. and
Next, the 𝐹𝐹 to the right of a dot forces 𝐹𝐹 → •(𝐸𝐸) and 𝐹𝐹 → •𝐢𝐢𝐢𝐢 to be added. No other items are
put into in 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼)by rule (2).

The Goto Operation

The second useful function is goto(I,X) where I is a set of items and X is a grammar symbol.
goto(I,X) is defined to be the closure of the set of all items [𝐴𝐴 → 𝛼𝛼𝛼𝛼•𝐵𝐵]such that[𝐴𝐴 → 𝛼𝛼•𝑋𝑋𝑋𝑋] is
in I. Intuitively, if I is the set of items that are valid for some viable prefix 𝛾𝛾 then goto(I,X) is the
set of items that are valid for the viable prefix 𝛾𝛾𝛾𝛾.

Example 4.35. If I is the set of two items {[𝐸𝐸′ → 𝐸𝐸•], [𝐸𝐸 → 𝐸𝐸• + 𝑇𝑇]}, then goto(I,+) consists of

 E → E + • T
 T → • T * F
 T → • F
 F → • (E)
 F → • id

We computed goto(I,+) by examining I for items with + immediately to the right of the dot. 𝐸𝐸′ →
𝐸𝐸• is not such an item, but 𝐸𝐸 → 𝐸𝐸• + 𝑇𝑇 is. We moved the dot over the + to get {𝐸𝐸 → 𝐸𝐸• + 𝑇𝑇 }
and then took the closure of this set.

Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

 3

Example 4.36. The canonical collection of sets of LR(0) items for the grammar of example 4.34 is
shown in figure 1 below. The goto function is given in the transition diagram given in figure 2.

I0: E′ → • E I5: F → id•
 E → • E + T
 E → • T I6: E → E +• T
 T → • T * F T → • T * F
 T → • F T → • F
 F → • (E) F → • (E)
 F → • id F → • id

I1: E′ → E• I7: T → T *• F
 E → E • + T F → • (E)
 F → • id
I2: E → T•
 T → T • * F I8: F → (E•)
 E → E • + T
I3: T → F•
 I9: E → E + T•
I4: F → (• E) T → T • * F
 E → • E + T
 E → • T I10: T → T * F•
 T → • T * F
 T → • F I11: F → (E) •
 F → • (E)
 F → • id

Figure 1. Canonical LR(0) collection for the grammar of Example 4.34

Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

 4

I0 I1

I2 I7 I10

I6 I9 to I7

to I3

to I3

to I2

to I4

to I5

E + T *

F
(

(

id

id

T * F

to I4

to I5

I3

F

(

id

id

T

F

+

E)
I4 I8 I11

I5

to I6

Figure 2. Transition diagram of DFA D for viable prefixes

Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

 5

Algorithm 4.8. Constructing an SLR parsing table.

Input: An augmented grammar 𝐺𝐺′.

Output. The SLR parsing table functions action and goto for 𝐺𝐺′.

Method.
1. Construct 𝐶𝐶 = {𝐼𝐼0, 𝐼𝐼1,⋯ , 𝐼𝐼𝑛𝑛} the collection of sets of LR(0) items for 𝐺𝐺′.
2. State 𝑖𝑖 Is constructed from 𝐼𝐼𝑖𝑖 . The parsing actions for state i are determined as follows:

a) If [𝐴𝐴 → 𝛼𝛼•𝑎𝑎𝑎𝑎] is in 𝐼𝐼𝑖𝑖 and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐼𝐼𝑖𝑖, 𝑎𝑎) = 𝐼𝐼𝑗𝑗 then set 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑎𝑎) to “shift j.” Here 𝑎𝑎 must
be terminal.

b) If[𝐴𝐴 → 𝛼𝛼•]is in 𝐼𝐼𝑖𝑖 then set 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, 𝑎𝑎) to “reduce 𝐴𝐴 → 𝛼𝛼” for all 𝑎𝑎 in 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐴𝐴).
 Here 𝐴𝐴may not be 𝑆𝑆′.

c) If [𝑆𝑆′ → 𝑆𝑆•] is in 𝐼𝐼𝑖𝑖 then set 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖, $) to “accept”
If any conflicting actions are generated by the above rules, we say the grammar is not SLR(1). The
algorithm fails to produce a parser in this case.
3. The 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 transitions for state i are constructed for all nonterminals 𝐴𝐴 using the rule:

if 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐼𝐼𝑖𝑖, 𝐴𝐴) = 𝐼𝐼𝑗𝑗, then 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐼𝐼𝑖𝑖, 𝐴𝐴) = 𝑗𝑗.
4. All entries not defined by rules (2) and (3) are made “error.”
5. The initial state of the parser is the one constructed from the set of items containing[𝑆𝑆′ → •𝑆𝑆].

Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

 6

Example:

 left side right side
1 E → E + T
2 E → T
3 T → T * F
4 T → F
5 F → (E)
6 F → id

Table 1. Set of productions expressions

STATE ACTION GOTO
id + * () $ E T F

0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1

10 r3 r3 r3 r3
11 r5 r5 r5 r5

	T * F
	F
	(E)
	id
	Table 1. Set of productions expressions

