Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

SLR — “Simple LR”

An LR(0) item (item for short) of a grammar G is a production of G with a dot at some position of
the right side. Thus, production A — XYZ yields the four items

A— eXYZ

A— XeYZ

A— XYeZ

A— XYZe
The production A —€ generates only one item, A — e,

The central idea in the SLR method is first to construct from the grammar a deterministic finite
automaton to recognize viable prefixes. We group items together in sets, which give rise to the
states of the SLR parser. The items can be viewed as the states of an NFA recognizing viable
prefixes, and the “grouping together” is really the subset construction discussed earlier.

To construct the canonical LR(0) collection for a grammar, we define an augmented grammar for
and two functions, closure and goto.

If Gis a grammar with start symbol S, then G'the augmented grammar for G is Gwith a new start
symbol S'and production S’ — S. The purpose of this new starting production is to indicate to the
parser when it should stop parsing and announce acceptance of the input. Acceptance occurs
only when the parser is about to reduce by S’ - S

The Closure Operation
If Iis a set of items for a grammar G then closure(I) is the set of items constructed from I by the
two rules:
1. |Initially, every item in I is added to closure(I)
2. If A - aeBpisin closure(l) and B — yis a production, then add the item B — ey to [if
it is not already there. We apply this rule until no more new items can be added to

closure(I).

Example 4.34

E+T
T*F

(£)

MM 44 mmm
2R 2R R RN

Translator Design Lecture 14

CMSC 4173 Constructing SLR Parsing Tables
If I is the set of one item {E' — oF } then closure(I) contains the items

E? — eF

E - oF+T

E - oT

T > eT*F

T - oF

F - e (E)

F - eid

Here, E' — oF is put in closure(I) by rule (1). Since there is an E immediately to the right of a
dot, by rule (2) we add the E-productions with dots at the left end, that is,E — eE 4+ Tand E —
oT Now there is a T immediately to the right of a dot, so we addT — oT * F and T — eF. and
Next, the F to the right of a dot forces F — ¢(E) and F — eid to be added. No other items are
put into in closure(I)by rule (2).

The Goto Operation

The second useful function is goto(/,X) where | is a set of items and X is a grammar symbol.
goto(l,X) is defined to be the closure of the set of all items [A - aXeB]such that[A — aeXB] is
in L Intuitively, if / is the set of items that are valid for some viable prefix y then goto(/,X) is the

set of items that are valid for the viable prefix yX.

Example 4.35. If /is the set of two items {[E’ — Ee],[E — Ee + T]}, then goto(/,+) consists of

E —> E+0T
T > OT*F
T — OF
F - O (F)
F - ¢id

We computed goto(l,+) by examining / for items with + immediately to the right of the dot. E' —
Ee is not such an item, but E — Ee + T is. We moved the dot over the + to get {E —» Ee + T}
and then took the closure of this set.

Translator Design

CMmMSC 4173

Lecture 14

Constructing SLR Parsing Tables

Example 4.36. The canonical collection of sets of LR(0) items for the grammar of example 4.34 is
shown in figure 1 below. The goto function is given in the transition diagram given in figure 2.

/0:

/1:

/2:

/3:

I4Z

MM Y4 mmm

of
oF+T
oT
oT*F
of
. (E)
eid

R N N

11
™
:
\i

11

Fe

)

(e E)
oF+T
oT
oT*F
of
°(E)
oid

R N N A

/52

Iel

/72

/32

Igl

/10:

/11:

F

M o= m
AR

\'

ﬁ
14l

\

14

ide

E+e T
oT*F
of
°(E)
eid
T*e F
*(E)
eid

(Ee)
Ee+T

E+Te
Te*F

T*Fe

(E) e

Figure 1. Canonical LR(0) collection for the grammar of Example 4.34

Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

Figure 2. Transition diagram of DFA D for viable prefixes

Translator Design Lecture 14
CMSC 4173 Constructing SLR Parsing Tables

Algorithm 4.8. Constructing an SLR parsing table.
Input: An augmented grammar G'.
Output. The SLR parsing table functions action and goto for G'.

Method.
1. Construct C = {ly,1;,--, I} the collection of sets of LR(0) items for G'.
2. State i Is constructed from I; . The parsing actions for state i are determined as follows:
a) If [A > aeaB]isinI; and goto(l;, a) = I; then set action(i, a) to “shift j.” Here a must
be terminal.
b) If[A — ae]isin I; then set action(i, a) to “reduce A — a” for alla in FOLLOW (A).
Here Amay not be S’.
c) If[S" - Se]isinI; then set action(i,$) to “accept”
If any conflicting actions are generated by the above rules, we say the grammar is not SLR(1). The
algorithm fails to produce a parser in this case.
3. The goto transitions for state iare constructed for all nonterminals A using the rule:
if goto(l;, A) = I;, then goto(I;,A) = j.
4. All entries not defined by rules (2) and (3) are made “error.”
5. Theinitial state of the parser is the one constructed from the set of items containing[S’ — eS].

Translator Design

Lecture 14

CMSC 4173 Constructing SLR Parsing Tables
Example:
left side right side

1 E > E+T

2 E - T

3 T > T*F

4 T - F

5 F - (E)

6 F - id

Table 1. Set of productions expressions
STATE ACTION GOTO
id + * () $ T F

0 s5 s4 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 2 3
5 ré ré ré ré
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 ri s7 ri rl
10 r3 r3 r3 r3
11 r5 r5 r5 r5

	T * F
	F
	(E)
	id
	Table 1. Set of productions expressions

