Translator Design
CMSC 4173

Uk, WN -

The ACTION function takes as arguments a state i and a terminal a (S, the input
endmarker). The value of ACTIONIi,a] can have one of four forms:
(a) Shift j where j is a state. The action taken by the parser effectively shifts input a

to the stack, but uses state j to represent a.

(b) Reduce A = B. The action of the parser effectively reduces f on the top of the

stack to head A.

(c) Accept. The parser accepts the input and finishes parsing.
(d) Error. The parser discovers an error in its input and takes some corrective action.
We extend the GOTO function, defined on sets of items, to states: if GOTO[/,A]=l, then

GOTO also maps a state i and a nonterminal A to statej.

Input

Stack

a, | a | | a S

I n

left side

E

MMM

NN 2R 2R ZN2

ACTION GOTO
Figure 1. LR Parser Model

right side

E+T

T

T*F

F

(E)

id

Table 1. Set of productions expressions

LR Parsing Program |————

Output

Translator Design Lecture 13
CMSC 4173 LR Parsing
let a be the first symbol of w$
while (1) {
let s be the state on top of the stack;
if (ACTION[s,al==shift t) {
push t onto the stack
let a be the next input symbol;
} else if (ACTION[s,a]==reduce A =)\
pop |B|symbols off the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack
output the production 4 - f ;
} else if (ACTION[s,a]==accept) break; //parsing is done
else error();
}
STACK SYMBOLS INPUT ALGORITHM ACTION
() |o id *id +id | ACTION[O,id]=s5 shift
$
(2) 105 id *jd+id S | ACTION[5,*]=r6 reduce by F— id
GOTOI0,F]=3
(3) 103 F *jd+id S | ACTION[3,*]=r4 reduce by T—> F
GOTOI[0,T]=2
(4) |02 T *id+id $ | ACTION[2,*]=s7 shift
(5 1027 T* id+id $ | ACTION[7,id]=s5 shift
(6) 10275 T*id +id $ | ACTION[5,+]=r6 reduce by F— id
GOTO[7,F]=10
(7) {02710 T*F +id $ | ACTION[10,+]=r3 reduceby T>T*F
GOTOI[0,T]=2
(8) 102 T +id $ | ACTION[2,+]=r2 reduce by E—>T
GOTOI[0,E]=1
(9) |01 E +id $ | ACTION[1,+]=s6 shift
(10) [016 E+ id$ | ACTION[6,id]=s5 shift
(11) (0165 E+id $ | ACT ION[5,$]=r6 reduce by F — id
GOTO[6,F]=3
(12) 10163 E+F S | ACTION[3,5]=r4 reduce by T—> F
GOTOI[6,T]=9
(13) |0169 E+T S | ACTION[9,S]=r1 reduceby E>E+T
GOTOI[0,E]=1
(14) |01 E S | ACTIONI[1,S5]=acc accept

Translator Design Lecture 13

CMSC 4173 LR Parsing
STATE ACTION GOTO

id + * () $ E T F
0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 ré ré ré ré
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 rl s7 rl rl
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Translator Design

Lecture 13

CMSC 4173 LR Parsing
STATE ACTION GOTO
id + * () $ T F
0 s5 s4 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 2 3
5 ré ré ré ré
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 rl s7 rl rl
10 r3 r3 r3 r3
11 r5 r5 r5 r5
STACK SYMBOLS INPUT ALGORITHM ACTION
(1) |0 id+id *id $ | ACTION[O,id]=s5 shift
(2) |05 id +id *id $ | ACTION[5,+]=r6 reduce by F— id
GOTOI0,F]=3
(3) 103 F +id *id $ | ACTIONI[3,+]=r4 reduce by T—> F
GOTOI0,T]=2
(4) 102 T +id *id $ | ACTION[2,+]=r2 reduceby E—>T
GOTOI0,E]=1
(5) 101 E +id *id $ | ACTION[1,+]=s6 shift
(6) {016 E+ id *id $ | ACTION[6,id]=s5 shift
(7) 10165 E+id *jd $ | ACTIONI5,*]=r6 reduce by F — id
GOTO[6,F]=3
(8) 10163 E+F *ijd S | ACTION[3,*]=r4 reduce by T— F
GOTO[6,T]=9
(9) 0169 E+T *jd $ | ACTIONI[9,*]=s7 shift
(10) | 01697 E+T* id$ | ACTION[7,id]=s5 shift
(11) |016975 E+T*id $ | ACTION[5,5]=r6 reduce by F — id
GOTO[7,F]=10
(12) |0169710 E+T*F $ | ACTION[10,5]=r3 reduceby T>T*
GOTO[6,T]=9 F
(13) |0169 E+T S | ACTION[9,5]=r1 reduce by E — E +
GOTOI[0,E]=1 T
(14) |01 E $ | ACTIONI[1,S]=acc accept

(3031"'sm!aiai+1"'an$)

X, X, X aa

m%i A1

..a

n

	T * F
	F
	(E)
	id
	Table 1. Set of productions expressions

