
Translator Design Lecture 13
CMSC 4173 LR Parsing

 1

1. The ACTION function takes as arguments a state i and a terminal a ($, the input

endmarker). The value of ACTION[i,a] can have one of four forms:
(a) Shift j where j is a state. The action taken by the parser effectively shifts input a

to the stack, but uses state j to represent a.
(b) Reduce 𝐴𝐴 → 𝛽𝛽. The action of the parser effectively reduces 𝛽𝛽 on the top of the

stack to head 𝐴𝐴.
(c) Accept. The parser accepts the input and finishes parsing.
(d) Error. The parser discovers an error in its input and takes some corrective action.

2. We extend the GOTO function, defined on sets of items, to states: if GOTO[Ii,A]=Ij, then
GOTO also maps a state i and a nonterminal A to state j.

sm-1

sm

$

...

a1 ai an $......Input

Stack

LR Parsing Program

ACTION GOTO

Output

Figure 1. LR Parser Model

 left side right side
1 E → E + T
2 E → T
3 T → T * F
4 T → F
5 F → (E)
6 F → id

Table 1. Set of productions expressions

Translator Design Lecture 13
CMSC 4173 LR Parsing

 2

let a be the first symbol of w$
while (1) {

let s be the state on top of the stack;
if (ACTION[s,a]==shift t) {

push t onto the stack
let a be the next input symbol;

} else if (ACTION[s,a]==reduce 𝐴𝐴 → 𝛽𝛽){
pop |𝛽𝛽|symbols off the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack
output the production 𝐴𝐴 → 𝛽𝛽 ;

} else if (ACTION[s,a]==accept) break; //parsing is done
else error();

}

 STACK SYMBOLS INPUT ALGORITHM ACTION
(1) 0 id * id + id

$
ACTION[0,id]=s5 shift

(2) 0 5 id * id + id $ ACTION[5,*]=r6
GOTO[0,F]=3

reduce by F → id

(3) 0 3 F * id + id $ ACTION[3,*]=r4
GOTO[0,T]=2

reduce by T → F

(4) 0 2 T * id + id $ ACTION[2,*]=s7 shift
(5) 0 2 7 T * id + id $ ACTION[7,id]=s5 shift
(6) 0 2 7 5 T * id + id $ ACTION[5,+]=r6

GOTO[7,F]=10
reduce by F → id

(7) 0 2 7 10 T * F + id $ ACTION[10,+]=r3
GOTO[0,T]=2

reduce by T → T * F

(8) 0 2 T + id $ ACTION[2,+]=r2
GOTO[0,E]=1

reduce by E → T

(9) 0 1 E + id $ ACTION[1,+]=s6 shift
(10) 0 1 6 E + id $ ACTION[6,id]=s5 shift
(11) 0 1 6 5 E + id $ ACT ION[5,$]=r6

GOTO[6,F]=3
reduce by F → id

(12) 0 1 6 3 E + F $ ACTION[3,$]=r4
GOTO[6,T]=9

reduce by T → F

(13) 0 1 6 9 E + T $ ACTION[9,$]=r1
GOTO[0,E]=1

reduce by E → E + T

(14) 0 1 E $ ACTION[1,$]=acc accept

Translator Design Lecture 13
CMSC 4173 LR Parsing

 3

STATE ACTION GOTO
id + * () $ E T F

0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1

10 r3 r3 r3 r3
11 r5 r5 r5 r5

Translator Design Lecture 13
CMSC 4173 LR Parsing

 4

STATE ACTION GOTO
id + * () $ E T F

0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1

10 r3 r3 r3 r3
11 r5 r5 r5 r5

 STACK SYMBOLS INPUT ALGORITHM ACTION
(1) 0 id + id * id $ ACTION[0,id]=s5 shift
(2) 0 5 id + id * id $ ACTION[5,+]=r6

GOTO[0,F]=3
reduce by F → id

(3) 0 3 F + id * id $ ACTION[3,+]=r4
GOTO[0,T]=2

reduce by T → F

(4) 0 2 T + id * id $ ACTION[2,+]=r2
GOTO[0,E]=1

reduce by E → T

(5) 0 1 E + id * id $ ACTION[1,+]=s6 shift
(6) 0 1 6 E + id * id $ ACTION[6,id]=s5 shift
(7) 0 1 6 5 E + id * id $ ACTION[5,*]=r6

GOTO[6,F]=3
reduce by F → id

(8) 0 1 6 3 E + F * id $ ACTION[3,*]=r4
GOTO[6,T]=9

reduce by T → F

(9) 0 1 6 9 E + T * id $ ACTION[9,*]=s7 shift
(10) 0 1 6 9 7 E + T * id $ ACTION[7,id]=s5 shift
(11) 0 1 6 9 7 5 E + T * id $ ACTION[5,$]=r6

GOTO[7,F]=10
reduce by F → id

(12) 0 1 6 9 7 10 E + T * F $ ACTION[10,$]=r3
GOTO[6,T]=9

reduce by T → T *
F

(13) 0 1 6 9 E + T $ ACTION[9,$]=r1
GOTO[0,E]=1

reduce by E → E +
T

(14) 0 1 E $ ACTION[1,$]=acc accept

$),(110 niim aaasss  +

niim aaaXXX  121 +

	T * F
	F
	(E)
	id
	Table 1. Set of productions expressions

