
Translator Design Lecture 11
CMSC 4173 p02 Overview

 1

Yacc is a tool that will generate a parser given an LR(0) grammar.

Structure of a Yacc Grammar

… definition section …
%%
… rules section …
%%
… user subroutine section …

Symbol Conventions

Typically, non-terminal symbols are given in lowercase and terminal symbols are assigned all capital
letters. For example, the rule:

program → program-head declarations program-body .

would be expressed for a yacc grammar as

program:
 program_head declarations program_body PERIOD

Note that hyphens have been change to underscores to satisfy the C++ rules for identifiers and the
period at the extreme right on the right hand side (RHS) of the rule has been changed to a capitalized
spelling.

Definition Section

The definition section can contain

• literal block
Declarations necessary for grammar actions and user subroutines are placed in the literal
block. The literal block includes all .h files. A literal block is enclosed between %{ and %} on
separate lines as shown below.
%{
… C++ macro preprocessor definitions, declarations, and code …
%}

Translator Design Lecture 11
CMSC 4173 p02 Overview

 2

• %union declarations
The %union declaration associates terminal and non-terminal symbols with C-types.
Identifiers defined in %token declarations and %type declarations are given specific types to
be exploited in actions in the rules section. For example

%union {

string* token;
SList* slist;

}
%%
%token <token> ID
%type <slist> identifier_list
%%
identifier_list:

ID
 {tfs << endl << "identifier_list -> ID(" << (*$1) << ")";
 $$=new SList;
 $$->Insert(*$1);
 }

identifier_list:
identifier_list COMMA ID
 {tfs << endl << "identifier_list -> " << (*$1) << " , ID(" << (*$3) << ")";
 $$->Insert(*$3);
 }

Notes:

1. The symbolic type token is assigned the type string* in the %union declaration.
2. The symbolic type slist is assigned the type SList* in the %union declaration.
3. The %token declaration defines the terminal symbol ID to have the type assigned to

the symbol type token. The terminal symbol ID now has type string*.
4. The %type declaration defines the non-terminal symbol identifier_list to have the

type assigned to the symbol type slist. The non-terminal symbol now has type SList*.
5. The rule, identifier-list → id, expressed in the yacc grammar as

identifier_list:
ID

has symbolic references to actual symbols represented by the terminal and non-
terminal symbols in the rule. $1 refers to the first symbol on the RHS of the rule. $2,
refers to the second symbol on the RHS of the rule. If there were five symbols on the
RHS, $5 would refer to the fifth symbol on the RHS. $$ refers to the non-terminal on
the LHS.

In this case, because of prior %union and %token declarations, $1 has type string*
and contains a pointer to the actual string recognized by the scanner and parser.

$$ has type SList* because of prior %union and %type declarations.

We first created a new SList, a string list, and, then we inserted the first identifier, a
string, in the SList.

• %token declarations
%token declarations are used to define terminal symbols. Terminal symbols defined by
%token declarations are made available to a scanner implemented using lex. File y.tab.h is
created when yacc is invoked. File y.tab.h assigns positive integer values to terminal symbols

Translator Design Lecture 11
CMSC 4173 p02 Overview

 3

defined using %token declarations. The values assigned to the terminal symbols are their
token codes not the actual values represented by the token. A token is an integer code and a
spelling. The spelling is the string of characters recognized by the scanner for that token.

To make the strings recognized by the scanner available to the parser for the example above,
you must add the following statement to the scanner.

yylval.token=new string(yytext);

Variable yytext has type char* and points to the most recent string of characters recognized
by the scanner.

• %type declarations
%type declarations perform much the same function as %token declarations with the
difference that %type declarations are designed for non-terminal symbols whereas %token
declarations are reserved for terminal symbols. %type declarations work in concert with
%union declarations. %union declarations associate a C type with a symbolic type name. The
symbolic type name is associated with a non-terminal symbol by a %type declaration.

• %start declarations
The %start declaration is used to alter the start symbol, a non-terminal.

• %left declarations
The %left declaration makes an operator left associative.
The order in which operators are specified defines their precedence. For example,
%left ‘+’ ‘-‘
%left ‘*’ ‘/’
make operators ‘+’ , ‘-‘ , ‘*’, and ‘/’ left associative. Operators ‘*’ and ‘/’ have higher
precedence than ‘+’ and ‘-‘.

• %right declarations
• The %right declaration makes an operator right associative.
• %nonassoc declarations

The %nonassoc defines an operator to have to association.

Rules Section

The rules section contains
• grammar rules

A rule of the grammar has a Left Hand Side (LHS) and a Right Hand Side (RHS). For example,
consider the following expression grammar below with actions enclosed between { and }.

• actions containing C++ code

%union {
double real;
string* strlit

}
%token PLUS MINUS STAR SLASH LPAREN RPAREN
%token <real> REALIT
%token <strlit> ID
%type <real> expression term factor
%%

Translator Design Lecture 11
CMSC 4173 p02 Overview

 4

statement:
ID ASSIGN expression {cout << endl << (*$1) “ := ” << $3;}

expression:
term {$$=$1;}

expression:
expression PLUS term {$$=$1+$3;}

expression:
expression MINUS term {$$=$1-$3;}

term:
factor {$$=$1;}

term:
term STAR factor {$$=$1*$3;}

term:
term SLASH factor {$$=$1/$3;}

factor:
REALIT {$$=$1;}

factor:
LPAREN expression RPAREN {$$=$2;}

factor:
MINUS factor {$$=-$1;}

