
Translator Design Lecture 10
CMSC 4173 Context Free Grammars

 1

Rest of
Front End

Symbol
Table

ParserLexical
Analysis

token

yylex()

parse tree IR
Intermediate

Representation

source program

Figure 1. Position of the parser in the compiler model

Context free grammars:
A context-free grammar has four components:
1. A set of tokens, known as terminal symbols or terminals.
2. A set of nonterminal symbols or noterminals.
3. A set of productions where each production consists of a nonterminal symbol, called the left
side of the production, an arrow, and a sequence of tokens and/or nonterminal symbols, called
the right side of the production.
4. A designation of one of the nonterminal symbol as the start symbol.

Notation
1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are italicized.

Example 1. Write a grammar for an arbitrarily long expression consisting of single digits separated
by either the plus sign or the minus sign.

 left side right side
1 list → list + digit
2 list → list – digit
3 list → digit
4 digit → 0
5 digit → 1
6 digit → 2
7 digit → 3
8 digit → 4
9 digit → 5
10 digit → 6
11 digit → 7
12 digit → 8
13 digit → 9

Table 1. Set of productions for the
grammar of Example 1.

1. The set of terminal symbols (tokens), T={+ - 0 1 2 3 4 5 6 7 8 9}
2. The set of nonterminal symbols, N={list digit}

Translator Design Lecture 10
CMSC 4173 Context Free Grammars

 2

3. The set of productions P. Refer to table 1.
4. The starting nonterminal symbol list.

Example 2. Write a grammar for the language micro.

 left side right side
1 program → begin statement-list end
2 statement-list → statement
3 statement-list → statement-list ; statement
4 statement → id := expression
5 statement → read (id-list)
6 statement → write (expression-list)
7 id-list → id
8 id-list → id-list , id
9 expression-list → expression
10 expression-list → expression-list , expression
11 expression → primary
12 expression → expression additive-operator primary
13 primary → (expression)
14 primary → id
15 primary → intlit
16 additive-operator → +
17 additive-operator → -

Table 2. Set of productions for the micro grammar of Example 2.
1. The set of terminal symbols (tokens), T={begin end read write id intlit ; := () + -}
2. The set of nonterminal symbols,

N={program statement-list statement id-list expression-list expression primary
additive- operator}

3. The set of productions P. Refer to table 2.
4. The starting nonterminal symbol program

Example 3. Write a grammar for expressions.

 left side right side
1 expression → expression + term
2 expression → expression – term
3 expression → term
4 term → term * factor
5 term → term / factor
6 term → factor
7 factor → (expression)
8 factor → id

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), T={ id () + - * /}
2. The set of nonterminal symbols,

N={expression, term, factor }
3. The set of productions P. Refer to table 3.
4. The starting nonterminal symbol expression.

Translator Design Lecture 10
CMSC 4173 Context Free Grammars

 3

Example 4. Write an abbreviated grammar for expressions.

 left side right side
1 E → E + T
2 E → E – T
3 E → T
4 T → T * F
5 T → T / F
6 T → F
7 F → (E)
8 F → id

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), T={ id () + - * /}
2. The set of nonterminal symbols,

N={E, T, F }
3. The set of productions P. Refer to table 3.
4. The starting nonterminal symbol E.

Derivations
Productions are rewriting rules. Beginning with the start symbol, each rewriting step replaces a
nonterminal by the body of one of its productions.

Example: Consider the grammar of example 3 and derive id+id*id

Rule left
side

 Right side

1 E → E + T
4 → E + T * F
8 → E + T * id
6 → E + F * id
8 → E + id * id
3 → T + id * id
6 → F + id * id
8 → id + id * id

Table 4. Rightmost derivation of id+id*id from E

Consider 𝛼𝛼𝛼𝛼𝛼𝛼 where 𝛼𝛼 and 𝛽𝛽 are strings of grammar symbols that can include both terminal
and nonterminal symbols. 𝐴𝐴 is a nonterminal symbol. Suppose 𝐴𝐴 → 𝛾𝛾 is a production. We
write 𝛼𝛼𝛼𝛼𝛼𝛼 ⇒ 𝛼𝛼𝛼𝛼𝛼𝛼. The symbol ⇒ means “derives in one step.” When 𝛼𝛼1 ⇒ 𝛼𝛼2 ⇒ ⋯ ⇒ 𝛼𝛼𝑛𝑛
rewrites 𝛼𝛼1 to 𝛼𝛼𝑛𝑛 we say 𝛼𝛼1 derives 𝛼𝛼𝑛𝑛. The symbol

∗
⇒ means “derives in zero or more steps.”

Likewise the symbol
+
⇒ means “derives in one or more steps.”

1. 𝛼𝛼

∗
⇒𝛼𝛼, for any string 𝛼𝛼.

2. If 𝛼𝛼
∗
⇒𝛽𝛽 and 𝛽𝛽

∗
⇒𝛾𝛾, then 𝛼𝛼

∗
⇒𝛾𝛾.

Translator Design Lecture 10
CMSC 4173 Context Free Grammars

 4

Derivation order.

1. 𝛼𝛼
∗
⇒
𝑙𝑙𝑙𝑙

𝛽𝛽 In leftmost derivations, the leftmost nonterminal in each sentential form is always

chosen. Parsers that employ leftmost derivations are top-down and often use recursion.
Such parsers are called LL meaning Left-to-right scan of the input source and Leftmost
derivations.

2. 𝛼𝛼
∗
⇒
𝑟𝑟𝑚𝑚

𝛽𝛽 In rightmost derivations, the rightmost nonterminal in each sentential form is always

chosen. Parsers that employ rightmost derivations are bottom-up or LR parsers for Left-to-
right scan of the input source and Rightmost derivation.

Parser Trees and Derivations.

 left side right side
1 E → E + E
2 E → E * E
3 E → - E
4 E → (E)
5 E → id

Table 5. Ambiguous grammar for expressions

-

()

id id

+
E E

E

E

Figure 2. Parse tree for –(id+id)

 left side right side
3 E → - E
4 → - (E)
1 → - (E + E)
5 → - (E + id)
5 → - (id + id)

Table 6. Derivation for figure 2.

Ambiguity.

A grammar is ambiguous if there exists more than one parse tree for some sentence in the
grammar. A grammar is ambiguous if there is more than one rightmost or leftmost derivation
of a sentence in the grammar.

Consider the ambiguous grammar of Table 4 and the sentence id+id*id.

Translator Design Lecture 10
CMSC 4173 Context Free Grammars

 5

 left side right side
1 E → E + E
2 E → E + E * E
5 E → E + E * id
5 E → E + id * id
5 E → id + id * id

Table 7. Rightmost derivation of id+id*id number 1

+

*

id id

id E

E

E

E

E

Figure 3. Rightmost derivation of id+id*id number 1.

 left side right side
2 E → E * E
5 E → E * id
1 E → E + E * id
5 E → E + id * id
5 E → id + id * id

Table 6. Rightmost derivation of id+id*id number 2

+

*

id id

idE E

E E

E

Figure 4. Rightmost derivation of id+id*id number 2.

