Translator Design Lecture 10

CMSC 4173 Context Free Grammars
token
source program Lexical parse tree Rest of IR
—_— A Parser —
Analysis |— — — — —] Front End Intermediate
yylex()

Representatior

Symbol
Table

Figure 1. Position of the parser in the compiler model

Context free grammars:

A context-free grammar has four components:

1. A set of tokens, known as terminal symbols or terminals.

2. A set of nonterminal symbols or noterminals.

3. A set of productions where each production consists of a nonterminal symbol, called the /eft
side of the production, an arrow, and a sequence of tokens and/or nonterminal symbols, called
the right side of the production.

4. A designation of one of the nonterminal symbol as the start symbol.

Notation
1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are jtalicized.

Example 1. Write a grammar for an arbitrarily long expression consisting of single digits separated
by either the plus sign or the minus sign.

left side right side
list list + digit
list list — digit
list digit
digit
digit
digit
digit
digit
digit
digit
digit
digit
13 digit N
Table 1. Set of productions for the
grammar of Example 1.

OO NOOULLBS WNBE

[
= O

N R R

oONOUA,WNRO

[ERN
N
o

1. The set of terminal symbols (tokens), T={+-0123456 7 8 9}
2. The set of nonterminal symbols, N={list digit}

Translator Design
CMSC 4173

3. The set of productions P. Refer to table 1.
4. The starting nonterminal symbol list.

Example 2. Write a grammar for the language micro.

Lecture 10
Context Free Grammars

left side right side
1 program — begin statement-list end
2 statement-list — Sstatement
3 statement-list — statement-list ; statement
4 statement — id := expression
5 statement — read (id-list)
6 statement — write (expression-list)
7 id-list - id
8 id-list - id-list,id
9 expression-list — expression
10 expression-list — expression-list , expression
11 expression - primary
12 expression — expression additive-operator primary
13 primary — (expression)
14 primary - id
15 primary - intlit
16 additive-operator - +
17 additive-operator — -
Table 2. Set of productions for the micro grammar of Example 2.
1. The set of terminal symbols (tokens), T={begin end read write id intlit ; := () + -}

2. The set of nonterminal symbols,

N={program statement-list statement id-list expression-list expression primary

additive- operator}
3. The set of productions P. Refer to table 2.
4. The starting nonterminal symbol program

Example 3. Write a grammar for expressions.

left side right side

1 expression — expression +term

2 expression — expression —term

3 expression - term

4 term — term * factor

5 term — term [factor

6 term - factor

7 factor — (expression)

8 factor - id

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), T={id () +- * /}

2. The set of nonterminal symbols,
N={expression, term, factor }

3. The set of productions P. Refer to table 3.

4. The starting nonterminal symbol expression.

Translator Design Lecture 10
CMSC 4173 Context Free Grammars

Example 4. Write an abbreviated grammar for expressions.

left side right side
1 E - E+T
2 E - E-T
3 E - T
4 T - T*F
5 T - TJ/F
6 T - F
7 F - (E)
8 F - id
Table 3. Set of productions expressions
1. The set of terminal symbols (tokens), T={iid () + - * /}
2. The set of nonterminal symbols,
N={E, T, F}
3. The set of productions P. Refer to table 3.
4. The starting nonterminal symbol E.
Derivations

Productions are rewriting rules. Beginning with the start symbol, each rewriting step replaces a
nonterminal by the body of one of its productions.

Example: Consider the grammar of example 3 and derive id+id*id
Rule left Right side

00O WO O 0 PH K-

side
E E+T

E+T*F

E+T*id

E+F*id

E+id*id

T+id *id

F+id *id

id +id *id

Table 4. Rightmost derivation of id+id*id from E

N R R AN A

Consider aAf where a and [§ are strings of grammar symbols that can include both terminal
and nonterminal symbols. A is a nonterminal symbol. Suppose A — ¥ is a production. We
write ¢Af = ayf. The symbol = means “derives in one step.” Whena; = a, = - = a,

*
rewrites a4 to a, we say a4 derives a,. The symbol = means “derives in zero or more steps.”

+
Likewise the symbol = means “derives in one or more steps.”

1. «a :*> a, for any string .
2. fa=>pLandB >y, thena=y.

Translator Design Lecture 10
CMSC 4173 Context Free Grammars

Derivation order.

*

1. «a l: B In leftmost derivations, the leftmost nonterminal in each sentential form is always
m

chosen. Parsers that employ leftmost derivations are top-down and often use recursion.
Such parsers are called LL meaning Left-to-right scan of the input source and Leftmost
derivations.

*

2. a™ B In rightmost derivations, the rightmost nonterminal in each sentential form is always
rm

chosen. Parsers that employ rightmost derivations are bottom-up or LR parsers for Left-to-
right scan of the input source and Rightmost derivation.

Parser Trees and Derivations.

left side right side
1 E - E+E
2 E - E*E
3 E - -E
4 E - (E)
5 E - id
Table 5. Ambiguous grammar for expressions
- / E\ E
]
(/+§)
E E
| |
id id
Figure 2. Parse tree for —(id+id)
left side right side
3 E - -E
4 - -(E)
1 - -(E+E)
5 - -(E+id)
5 - -(id+id)
Table 6. Derivation for figure 2.
Ambiguity.

A grammar is ambiguous if there exists more than one parse tree for some sentence in the
grammar. A grammar is ambiguous if there is more than one rightmost or leftmost derivation
of a sentence in the grammar.

Consider the ambiguous grammar of Table 4 and the sentence id+id*id.

Translator Design Lecture 10

CMmMSC 4173

[S2 I U2 R 00 N S I

g, 0N

Context Free Grammars
left side right side
E - E+E
E > E+E*E
E - E+E*id
E - E+id*id
E - id+id*id
Table 7. Rightmost derivation of id+id*id number 1
| + /E\
id E * E
id id
Figure 3. Rightmost derivation of id+id*id number 1.
left side right side
E - E*E
E - E*id
E - E+E*id
E - E+id*id
E - id+id*id

Table 6. Rightmost derivation of id+id*id number 2

/*\

id id
Figure 4. Rightmost derivation of id+id*id number 2.

E

E

E
d

