

Figure 1. Position of the parser in the compiler model

Context free grammars:

A *context-free grammar* has four components:

1. A set of *tokens*, known as *terminal symbols* or *terminals*.
2. A set of *nonterminal symbols* or *noterminals*.
3. A set of *productions* where each production consists of a nonterminal symbol, called the *left side* of the production, an arrow, and a sequence of tokens and/or nonterminal symbols, called the *right side* of the production.
4. A designation of one of the *nonterminal symbol* as the *start symbol*.

Notation

1. Terminal symbols are expressed in **bold** print.
2. Nonterminal symbols are *italicized*.

Example 1. Write a grammar for an arbitrarily long expression consisting of single digits separated by either the plus sign or the minus sign.

	<i>left side</i>	<i>right side</i>
1	<i>list</i>	\rightarrow <i>list</i> + <i>digit</i>
2	<i>list</i>	\rightarrow <i>list</i> – <i>digit</i>
3	<i>list</i>	\rightarrow <i>digit</i>
4	<i>digit</i>	\rightarrow 0
5	<i>digit</i>	\rightarrow 1
6	<i>digit</i>	\rightarrow 2
7	<i>digit</i>	\rightarrow 3
8	<i>digit</i>	\rightarrow 4
9	<i>digit</i>	\rightarrow 5
10	<i>digit</i>	\rightarrow 6
11	<i>digit</i>	\rightarrow 7
12	<i>digit</i>	\rightarrow 8
13	<i>digit</i>	\rightarrow 9

Table 1. Set of productions for the grammar of Example 1.

1. The set of terminal symbols (tokens), $T=\{+ - \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\}$
2. The set of nonterminal symbols, $N=\{\textit{list digit}\}$

3. The set of productions P . Refer to table 1.
4. The starting nonterminal symbol $list$.

Example 2. Write a grammar for the language *micro*.

	<i>left side</i>	<i>right side</i>
1	<i>program</i>	$\rightarrow \text{begin statement-list end}$
2	<i>statement-list</i>	$\rightarrow \text{statement}$
3	<i>statement-list</i>	$\rightarrow \text{statement-list ; statement}$
4	<i>statement</i>	$\rightarrow \text{id} := \text{expression}$
5	<i>statement</i>	$\rightarrow \text{read (id-list)}$
6	<i>statement</i>	$\rightarrow \text{write (expression-list)}$
7	<i>id-list</i>	$\rightarrow \text{id}$
8	<i>id-list</i>	$\rightarrow \text{id-list , id}$
9	<i>expression-list</i>	$\rightarrow \text{expression}$
10	<i>expression-list</i>	$\rightarrow \text{expression-list , expression}$
11	<i>expression</i>	$\rightarrow \text{primary}$
12	<i>expression</i>	$\rightarrow \text{expression additive-operator primary}$
13	<i>primary</i>	$\rightarrow (\text{expression})$
14	<i>primary</i>	$\rightarrow \text{id}$
15	<i>primary</i>	$\rightarrow \text{intlit}$
16	<i>additive-operator</i>	$\rightarrow +$
17	<i>additive-operator</i>	$\rightarrow -$

Table 2. Set of productions for the *micro* grammar of **Example 2**.

1. The set of terminal symbols (tokens), $T=\{\text{begin end read write id intlit ; := () + -}\}$
2. The set of nonterminal symbols,
 $N=\{\text{program statement-list statement id-list expression-list expression primary additive- operator}\}$
3. The set of productions P . Refer to table 2.
4. The starting nonterminal symbol *program*

Example 3. Write a grammar for expressions.

	<i>left side</i>	<i>right side</i>
1	<i>expression</i>	$\rightarrow \text{expression + term}$
2	<i>expression</i>	$\rightarrow \text{expression - term}$
3	<i>expression</i>	$\rightarrow \text{term}$
4	<i>term</i>	$\rightarrow \text{term * factor}$
5	<i>term</i>	$\rightarrow \text{term / factor}$
6	<i>term</i>	$\rightarrow \text{factor}$
7	<i>factor</i>	$\rightarrow (\text{expression})$
8	<i>factor</i>	$\rightarrow \text{id}$

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), $T=\{\text{id () + - * /}\}$
2. The set of nonterminal symbols,
 $N=\{\text{expression, term, factor}\}$
3. The set of productions P . Refer to table 3.
4. The starting nonterminal symbol *expression*.

Example 4. Write an abbreviated grammar for expressions.

	<i>left side</i>	<i>right side</i>
1	E	$\rightarrow E + T$
2	E	$\rightarrow E - T$
3	E	$\rightarrow T$
4	T	$\rightarrow T * F$
5	T	$\rightarrow T / F$
6	T	$\rightarrow F$
7	F	$\rightarrow (E)$
8	F	$\rightarrow \text{id}$

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), $T=\{ \text{id} () + - * / \}$
2. The set of nonterminal symbols,
 $N=\{E, T, F\}$
3. The set of productions P . Refer to table 3.
4. The starting nonterminal symbol E .

Derivations

Productions are rewriting rules. Beginning with the start symbol, each rewriting step replaces a nonterminal by the body of one of its productions.

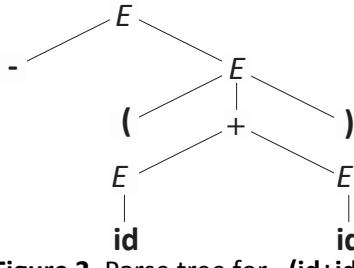
Example: Consider the grammar of example 3 and derive $\text{id}+\text{id}*\text{id}$

<i>Rule</i>	<i>left side</i>	<i>Right side</i>
1	E	$\rightarrow E + T$
4		$\rightarrow E + T * F$
8		$\rightarrow E + T * \text{id}$
6		$\rightarrow E + F * \text{id}$
8		$\rightarrow E + \text{id} * \text{id}$
3		$\rightarrow T + \text{id} * \text{id}$
6		$\rightarrow F + \text{id} * \text{id}$
8		$\rightarrow \text{id} + \text{id} * \text{id}$

Table 4. Rightmost derivation of $\text{id}+\text{id}*\text{id}$ from E

Consider $\alpha A \beta$ where α and β are strings of grammar symbols that can include both terminal and nonterminal symbols. A is a nonterminal symbol. Suppose $A \rightarrow \gamma$ is a production. We write $\alpha A \beta \rightarrow \alpha \gamma \beta$. The symbol \rightarrow means “derives in one step.” When $\alpha_1 \rightarrow \alpha_2 \rightarrow \dots \rightarrow \alpha_n$ rewrites α_1 to α_n we say α_1 derives α_n . The symbol $\stackrel{*}{\Rightarrow}$ means “derives in zero or more steps.” Likewise the symbol $\stackrel{+}{\Rightarrow}$ means “derives in one or more steps.”

1. $\alpha \stackrel{*}{\Rightarrow} \alpha$, for any string α .
2. If $\alpha \stackrel{*}{\Rightarrow} \beta$ and $\beta \stackrel{*}{\Rightarrow} \gamma$, then $\alpha \stackrel{*}{\Rightarrow} \gamma$.


Derivation order.

1. $\alpha \xrightarrow[lm]^* \beta$ In leftmost derivations, the leftmost nonterminal in each sentential form is always chosen. Parsers that employ leftmost derivations are top-down and often use recursion. Such parsers are called **LL** meaning **Left-to-right** scan of the input source and **Leftmost** derivations.
2. $\alpha \xrightarrow[rm]^* \beta$ In rightmost derivations, the rightmost nonterminal in each sentential form is always chosen. Parsers that employ rightmost derivations are bottom-up or **LR** parsers for **Left-to-right** scan of the input source and **Rightmost** derivation.

Parser Trees and Derivations.

	<i>left side</i>	<i>right side</i>
1	E	$\rightarrow E + E$
2	E	$\rightarrow E * E$
3	E	$\rightarrow - E$
4	E	$\rightarrow (E)$
5	E	$\rightarrow id$

Table 5. Ambiguous grammar for expressions

Figure 2. Parse tree for $-(id+id)$

	<i>left side</i>	<i>right side</i>
3	E	$\rightarrow - E$
4		$\rightarrow - (E)$
1		$\rightarrow - (E + E)$
5		$\rightarrow - (E + id)$
5		$\rightarrow - (id + id)$

Table 6. Derivation for figure 2.

Ambiguity.

A grammar is ambiguous if there exists more than one parse tree for some sentence in the grammar. A grammar is ambiguous if there is more than one rightmost or leftmost derivation of a sentence in the grammar.

Consider the ambiguous grammar of Table 4 and the sentence **id+id*id**.

	<i>left side</i>	<i>right side</i>
1	E	$\rightarrow E + E$
2	E	$\rightarrow E + E * E$
5	E	$\rightarrow E + E * id$
5	E	$\rightarrow E + id * id$
5	E	$\rightarrow id + id * id$

Table 7. Rightmost derivation of $id + id * id$ number 1

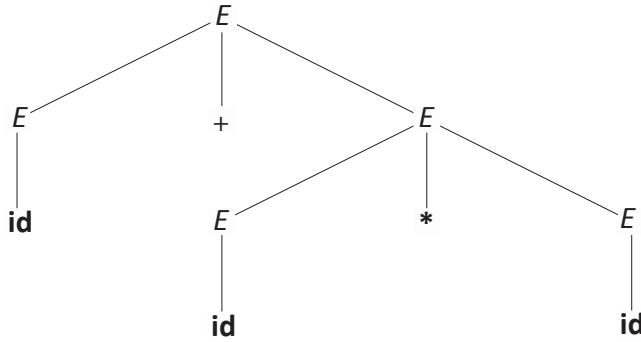


Figure 3. Rightmost derivation of $id + id * id$ number 1.

	<i>left side</i>	<i>right side</i>
2	E	$\rightarrow E * E$
5	E	$\rightarrow E * id$
1	E	$\rightarrow E + E * id$
5	E	$\rightarrow E + id * id$
5	E	$\rightarrow id + id * id$

Table 6. Rightmost derivation of $id + id * id$ number 2

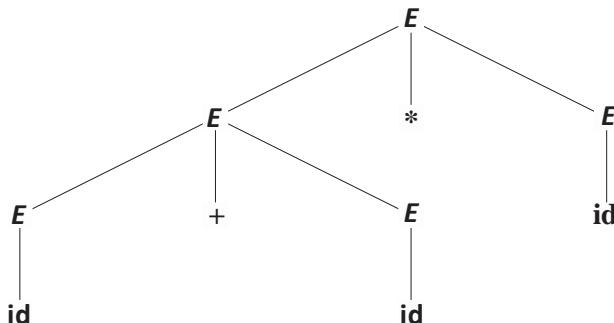


Figure 4. Rightmost derivation of $id + id * id$ number 2.