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Figure 1. Position of the parser in the compiler model

Context free grammars:

A context-free grammar has four components:

1. A set of tokens, known as terminal symbols or terminals.

2. A set of nonterminal symbols or noterminals.

3. A set of productions where each production consists of a nonterminal symbol, called the /eft
side of the production, an arrow, and a sequence of tokens and/or nonterminal symbols, called
the right side of the production.

4. A designation of one of the nonterminal symbol as the start symbol.

Notation
1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are jtalicized.

Example 1. Write a grammar for an arbitrarily long expression consisting of single digits separated
by either the plus sign or the minus sign.

left side right side
list list + digit
list list — digit
list digit
digit
digit
digit
digit
digit
digit
digit
digit
digit
13 digit N
Table 1. Set of productions for the
grammar of Example 1.
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1. The set of terminal symbols (tokens), T={+-0123456 7 8 9}
2. The set of nonterminal symbols, N={list digit}
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3. The set of productions P. Refer to table 1.
4. The starting nonterminal symbol list.

Example 2. Write a grammar for the language micro.

Lecture 10
Context Free Grammars

left side right side
1 program — begin statement-list end
2 statement-list — Sstatement
3 statement-list — statement-list ; statement
4 statement — id := expression
5 statement — read ( id-list)
6 statement — write ( expression-list )
7 id-list - id
8 id-list - id-list,id
9 expression-list —  expression
10 expression-list —  expression-list , expression
11 expression - primary
12 expression — expression additive-operator primary
13 primary — ( expression)
14 primary - id
15 primary - intlit
16 additive-operator - +
17 additive-operator — -
Table 2. Set of productions for the micro grammar of Example 2.
1. The set of terminal symbols (tokens), T={begin end read write id intlit ; := () + -}

2. The set of nonterminal symbols,

N={program statement-list statement id-list expression-list expression primary

additive- operator}
3. The set of productions P. Refer to table 2.
4. The starting nonterminal symbol program

Example 3. Write a grammar for expressions.

left side right side

1 expression —  expression +term

2 expression —  expression —term

3 expression - term

4 term —  term * factor

5 term —  term [ factor

6 term -  factor

7  factor —  ( expression)

8 factor - id

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), T={id () +- * /}

2. The set of nonterminal symbols,
N={expression, term, factor }

3. The set of productions P. Refer to table 3.

4. The starting nonterminal symbol expression.
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Example 4. Write an abbreviated grammar for expressions.

left side right side
1 E - E+T
2 E - E-T
3 E - T
4 T - T*F
5 T - TJ/F
6 T - F
7 F - (E)
8 F - id
Table 3. Set of productions expressions
1. The set of terminal symbols (tokens), T={iid () + - * /}
2. The set of nonterminal symbols,
N={E, T, F}
3. The set of productions P. Refer to table 3.
4. The starting nonterminal symbol E.
Derivations

Productions are rewriting rules. Beginning with the start symbol, each rewriting step replaces a
nonterminal by the body of one of its productions.

Example: Consider the grammar of example 3 and derive id+id*id
Rule left Right side

00O WO O 0 PH K-

side
E E+T

E+T*F

E+T*id

E+F*id

E+id*id

T+id *id

F+id *id

id +id *id

Table 4. Rightmost derivation of id+id*id from E
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Consider aAf where a and [§ are strings of grammar symbols that can include both terminal
and nonterminal symbols. A is a nonterminal symbol. Suppose A — ¥ is a production. We
write ¢Af = ayf. The symbol = means “derives in one step.” Whena; = a, = - = a,

*
rewrites a4 to a, we say a4 derives a,. The symbol = means “derives in zero or more steps.”

+
Likewise the symbol = means “derives in one or more steps.”

1. «a :*> a, for any string .
2. fa=>pLandB >y, thena=y.
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Derivation order.

*

1. «a l: B In leftmost derivations, the leftmost nonterminal in each sentential form is always
m

chosen. Parsers that employ leftmost derivations are top-down and often use recursion.
Such parsers are called LL meaning Left-to-right scan of the input source and Leftmost
derivations.

*

2. a™ B In rightmost derivations, the rightmost nonterminal in each sentential form is always
rm

chosen. Parsers that employ rightmost derivations are bottom-up or LR parsers for Left-to-
right scan of the input source and Rightmost derivation.

Parser Trees and Derivations.

left side right side
1 E - E+E
2 E - E*E
3 E - -E
4 E - (E)
5 E - id
Table 5. Ambiguous grammar for expressions
- / E\ E
]
( /+§ )
E E
| |
id id
Figure 2. Parse tree for —(id+id)
left side right side
3 E - -E
4 - -(E)
1 - -(E+E)
5 - -(E+id)
5 - -(id+id)
Table 6. Derivation for figure 2.
Ambiguity.

A grammar is ambiguous if there exists more than one parse tree for some sentence in the
grammar. A grammar is ambiguous if there is more than one rightmost or leftmost derivation
of a sentence in the grammar.

Consider the ambiguous grammar of Table 4 and the sentence id+id*id.
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left side right side
E - E+E
E > E+E*E
E - E+E*id
E - E+id*id
E - id+id*id
Table 7. Rightmost derivation of id+id*id number 1
| + /E\
id E * E
id id
Figure 3. Rightmost derivation of id+id*id number 1.
left side right side
E - E*E
E - E*id
E - E+E*id
E - E+id*id
E - id+id*id

Table 6. Rightmost derivation of id+id*id number 2

/*\

id id
Figure 4. Rightmost derivation of id+id*id number 2.
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