

Nondeterministic Finite Automata (NFA)¹

1. A set of *states* S
2. A set of input symbols Σ (the input symbol alphabet)
3. A transition function, *move*, that maps state-symbol pairs to sets of states
4. A state, s_0 that is distinguished as the *start* or initial state.
5. A set of states, F , distinguished as accepting or *final* states.

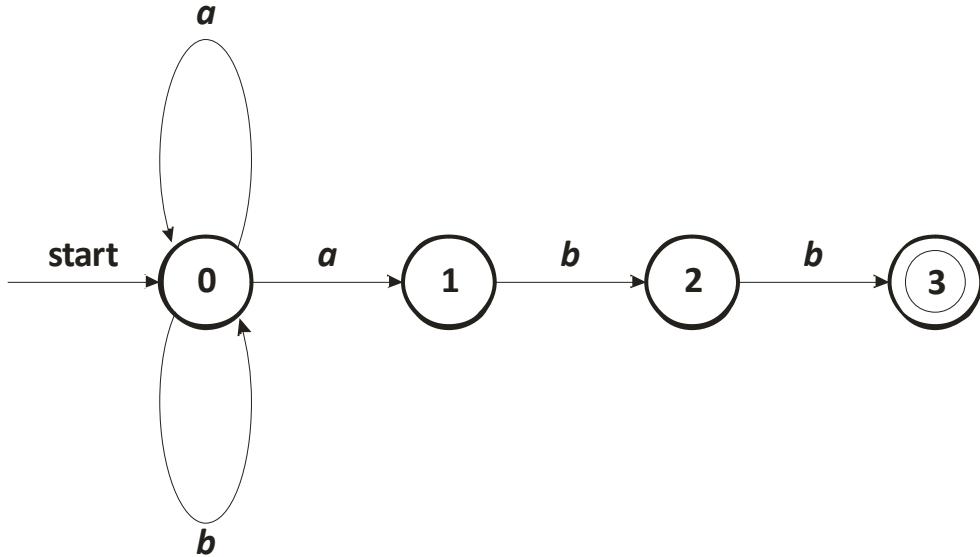


Figure 1. A transition diagram of a NFA that accepts $(a|b)^*abb$.

1. $S = \{0,1,2,3\}$
2. Table 1 shows the transition function move for the NFA of Figure 1.
3. $\Sigma = \{a, b\}$
4. $s_0 = 0$
5. $F = \{3\}$

State	Input Symbol	
	<i>a</i>	<i>b</i>
0	{0,1}	{0}
1	-	{2}
2	-	{3}

Table 1. Transition function for the NFA of Figure 1.

An NFA accepts an input string x if and only if there is some path in the transition graph from the start state to some accepting state, such that the edge labels along this path spell out x . For example, $aabb$ is accepted by the path from state 0, following the edge labeled a to state 0 again, then to states 1, 2, and 3 via edges labeled a , b , and b , respectively.

Figure 2. State transition diagram for the input string $aabb$.

¹ Excepted from Aho, Sethi, and Ullman *Compilers, principles, techniques, and tools*. Addison-Wesley, 1986, ISBN 0-201-10088-6

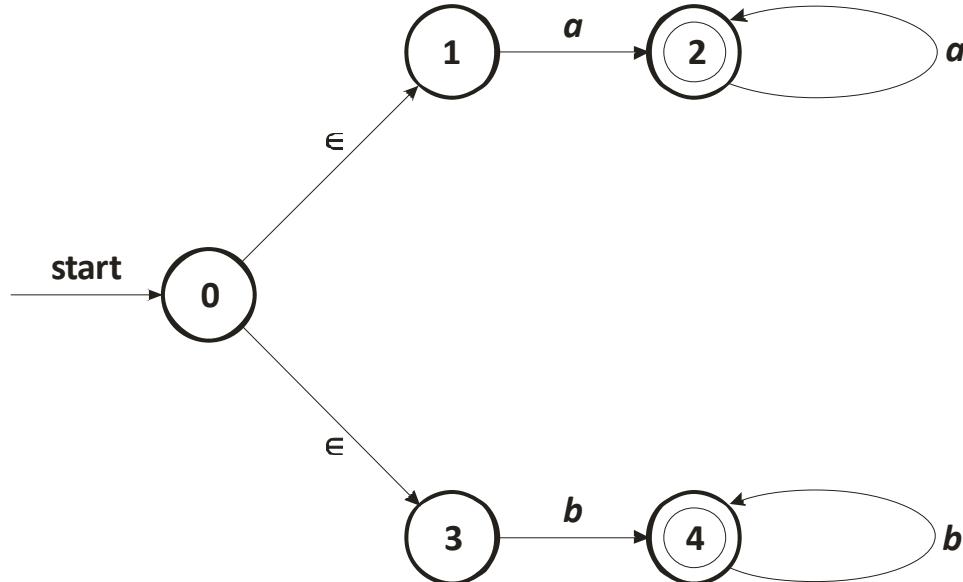


Figure 3. Nondeterministic Finite Automata that recognizes $aa^*|bb^*$

State	Input Symbol		
	ϵ	a	b
0	{1,3}		
1		{2}	
2		{2}	
3			{4}
4			{4}

Table 2. Transition function for the NFA of Figure 3.

1. $S = \{0,1,2,3,4\}$
2. Table 2 shows the transition function move for the NFA of Figure 3.
3. $\Sigma = \{\epsilon, a, b\}$
4. $s_0 = 0$
5. $F = \{3,4\}$

Note that ϵ 's "disappear" in concatenation.

1. What is the input alphabet of each of the following languages?
 - 1.1. Pascal
 - 1.2. C
 - 1.3. Fortran 77
 - 1.4. Ada
 - 1.5. Lisp
2. What are the conventions regarding the use of blanks in each of the languages of exercise 1.
3. Describe the languages denoted by the following regular expressions:
 - 3.1. $0(0|1)^*0$
 - 3.2. $((\in|0)1^*)^*$
 - 3.3. $(0|1)^*0(0|1)(0|1)$
 - 3.4. $0^*10^*10^*10^*$
4. Write regular definitions for the following languages.
 - 4.1. All strings of letters that contain the five vowels in order.
 - 4.2. Comments consisting of a string surrounded by /* and */ without an intervening */ unless it appears inside the quotes " and ".
5. Construct nondeterministic finite automata for the following regular expressions.
 - 5.1. $(a|b)^*$
 - 5.2. $(a^*|b^*)^*$
 - 5.3. $((\in|a)b^*)^*$
 - 5.4. $(a|b)^*abb(a|b)^*$