Translator Design
CMSC 4173

Input: var a,b,c:real;

Lecture 2
Lexical analysis and lex

source program
(character stream)

l

lexical analyzer
(scanner)

l

tokens
(integer code,string)

Figure 1. Lexical analyzer input and output

Integer code Integer code name String spelling
221 VAR var
200 ID a
300 COMMA ,
200 ID b
300 COMMA ,
200 ID C
301 COLON :
200 ID real
302 SEMICOLON ;

Table 1. Lexical analyzer output for “var a,b,c:real;”

Translator Design

CMSC 4173
(source.l)
lex
S lex source.l
(lex.yy.c)
$ mv lex.yy.c source.cpp
(source.cpp)
Figure 2. Invocation of lex
Notes:
1. The input file name always has the suffix .l
2. The output file name is always lex.yy.c
3. The command to invoke the lex utility
S lex source.l
4,

Lecture 2
Lexical analysis and lex

Every c-program is also a c++-program. To change the output file to be a c++-program only

the name needs to be changed.
$ mv lex.yy.c source.cpp

Translator Design Lecture 2
CMSC 4173 Lexical analysis and /ex

1. Structure of a Lex Specification

... definition section
%%

... rules section

%%

... user subroutines

2. Definition Section
2.1. literal block
%{
... Cand C++ comments, directives, and declarations
%}
2.2. definitions
A definition takes the form:

NAME expression
The name can contain letters, digits, and underscores, and must not start with a digit.

In the rules section, patterns may include references to substitutions with the name in

braces, for example, “{NAME}". The expression corresponding to the name is
substituted literally into pattern. For example.

DIGIT [0-9]

%%

{DIGIT}+ process_integer();

{DIGIT}\{DIGIT}* |

\{DIGIT}+ process_real();

Figure 1. A lex specification that containing a definition

3. Rules Section
Arule is a pattern followed by C or C++ code. For example:

substituted literally into pattern. For example.

%%
[\t\n]+;
%%

Figure 2. A lex specification that discards white space

Translator Design
CMSC 4173

Lecture 2
Lexical analysis and lex

3.1. Regular Expression Syntax
3.1.1.Metacharacters

Character

[

Description

Matches any single character except the newline character ‘\n’.

Match any one of the characters with the brackets. Arange of characters
is indicated with the “-“ (dash), e.g., “[0-9]” for any of the 10 digits. If
the first character after the open bracket is a dash or a close bracket, it
is not interpreted as a metacharacter If the first character is a circumflex
“n" it changes the meaning to match any character except those within
the brackets. (Such a character class will match a newline unless you
explicitly exclude it.) Other metacharacters have no special meaning
within square brackets except that C escape sequences starting with “\”
are recognized.

Matches zero or more of the preceding expression. For example, the
pattern

a.*z

“uon
z

matches any string that starts with “a” and ends with “z”, such as “az”,
“abz”, or “alcatraz”.
Matches one or more occurrence of the preceding regular expression.

For example,

X+

ow.,n
X

matches “x”, “xxx”, or “xxxxx”, but not an empty string, and

(ab)+

matches “ab”, “abab”, “ababab”, and so forth.

Matches zero of one occurrence of the preceding regular expression. For
example:

-?[0-9]+

indicates a whole number with an optional leading unary minus sign.

Translator Design Lecture 2

CMSC 4173 Lexical analysis and lex
Character Description
{} A single number “{n}’ means n repetitions of the preceding pattern, e.g.,
[A-Z]{3}

matches any three upper case letters.

If the braces contain two numbers separated by a comma, “{n,m}”, they
are a minimum and maximum number of repetitions of the preceding
pattern. For example:

A{1,3}

matches one to three occurrences of the letter “A”. If the second
number is missing, it is taken to be infinite, so “{1,}” means the same as
“+” and “{0,}’ means the same as “*”.

\ If the following character is a lowercase letter, then it is a C escape
sequence such as “\t” for tab. Some implementations also allow octal
and hex characters in the form “\123” and “\x3f”. Otherwise “\” quotes
the following character, so”*” matches an asterisk.

() Group a series of regular expressions together. Each of the “*”, “+”, and
“[1” effects only the expression immediately to its left, and “|” normally
affects everything to its left and right. Parentheses can change this, for
example:

(ab]cd)?ef

matches “abef”, “cdef”, or just “|”

Match either the preceding regular expression or the subsequent regular
expression. For example:

twelve|12

matches either “twelve” or “12”
“. Match everything withing the quotation marks literally. Metacharacters
other than “\” lose their meaning. For example:

u/*n

matches the two characters
/ Matches the preceding regular expression but only if followed by the
following regular expression. For example:

0/1
matches “0” in the string “01” but does not match anything in the strings

“0” or “02”. Only one slash is permitted per pattern, and a pattern
cannot contain both a slash and a trailing “$”

Translator Design Lecture 2

CMSC 4173 Lexical analysis and lex
Character Description
A As the first character of a regular expression, it matches the beginning of
a line; it is also used for negation within square brackets. Otherwise not
special.
) As the last character of a regular expression, it matches the end of a line

— otherwise it is not special. The “$” has the same meaning as “/\n”
when at the end of an expression.

<> A name of list of names in angle brackets at the beginning of a pattern
makes that pattern apply only in the given start states.

4. User Subroutines
User subroutines are C and C++ functions. Function prototypes must appear before their
implementations in this section.

%({

#include <string>

#define ID 1

#define READ 2

#define WRITE 3

#define BEGAN 4

#define END 5

int TokenMgr(int t);

%}

%%

[\t\n]+ ;

[a-z]+ return TokenMgr(ID);

%%

int TokenMgr(int t)

{ string rw[]={"",””,”read”,”write”,”begin”,”end”};

for (int k=2;k<6;k++) if ((string)yytext==rw[k]) return k;
return t;

Figure 2. A lex specification containing a user subroutine

5. lex and C++
The Unix utility lex creates a C program and is designed to work with other C programs. Care
must be exercised to employ lex in a C++ environment. Directives shown in figure 3 must be
included to ensure the function yylex, the lexical analyzer produced by lex can be called from
a C++ program.
#ifdef __cplusplus

extern "C"
#endif
int yylex (void);

Figure 3. C++ Preprocessor directives allowing function yylex to be called from a C++
program

Translator Design Lecture 2
CMSC 4173 Lexical analysis and lex

6.

lex and files

Since lex creates a C program, it uses standard input/output text file definitions developed
for Cin include file <cstdio>. If you wish to have your scanner find tokens in an external file,
you will have to redirect the standard input file from the keyboard to a FILE as defined in the
include file <cstdio>. Refer to the code fragment included in figure 4.

ttinclude <cstdio>

char ifn[255]; //Input file name
FILE* i=fopen(ifn,”r”); //Open the file whose name is stored in string ifn.
yyin=i; // Redirect the input from the keyboard to FILE i
// Variable yyin is the name given to the standard
input file
// by lex.
fcloseli); //Close FILE i.

Figure 4. lex and the standard input file

Invoking lex and makefiles

Typically, a programmer will want to automate the creation of a program that includes a
scanner. An example makefile is given in figure 5. Note that the program consists of two
source files, pas.cpp and paslex.l. File pas.cpp is compiled in the normal way. The utility lex
creates file lex.yy.c from pasles.. Then, file lex.yy.c is renamed to paslex.cpp. Next,
paslex.cpp is translated by the C++ compiler to object file paslex.o. Note that every C program
is also a C++ program. Finally, the two object files pas.o and paslex.o are bound into and
executable program in file pas.

Translator Design Lecture 2
CMSC 4173 Lexical analysis and /ex

H.
#

File makepas creates a subset Pascal Scanner
H.

Author: Thomas R. Turner
E-Mail: trturner@uco.edu
Date: November, 2006

H.
#

Copyright November, 2006 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.
H.

Object files

H.

obj = pas.o\
paslex.o

H.

#

Bind the subset Pascal Scanneer

H.
#

pas: ${obj}
g++ -0 pas ${obj} -Im -lI

H.
#

File pas.cpp processes command line arguments
H.

pas.o: pas.cpp paslex.h
g++ -C -g pas.cpp

H.

#

File paslex.cpp is the lex-generated scanner

H.
#

paslex.cpp: paslex.| paslex.h

lex paslex.|

mv lex.yy.c paslex.cpp
H.
#
paslex.o: paslex.cpp paslex.h

g++ -C -g paslex.cpp

Figure 5. File makepas, a makefile that creates a Subset Pascal Scanner.
Reference:

1. Levine, J. R., Mason, T., and Brown D. /ex& yacc 2" Ed. O’Reilly & Associates 1992 ISBN:
1-56592-000-7

2. Gardner, J. Linseman, A. Nicol, S., Retterrath, C. and Chartier, M. MKS LEX & YACC 3™ Ed.
Mortice Kern Systems, Inc. 1993 ISBN 1-895033-26-8

Translator Design
CMSC 4173

Lecture 2
Lexical analysis and lex

H

b

File p03make creates executable file p03.
H

Author: Thomas R. Turner
E-Mail: tturner@uco.edu
Date: September, 2002

H
Bind p03.0, Scan03.0
#
p03: p03.0 Scan03.0
g++ -0 p03 p03.0 Scan03.0 -l
H

b

Compile p03.cpp

H

p03.0: p03.cpp Scan03.h
g++-g -c p03.cpp

H

b

Compile Scan03.1. First translate the lex specification, then compile
H

Scan03.0: Scan03.cpp Scan03.h
g++-g -c Scan03.cpp
Scan03.cpp: Scan03.l Scan03.h
lex Scan03.1
mv lex.yy.c Scan03.cpp

Figure 6. File p03make

Translator Design Lecture 2
CMSC 4173 Lexical analysis and lex

/l
//File p03.cpp processes command line parameters, opens input and output files
//found on the command line, and employs a stack to compute the value of
//a postfix expresssion found in the input file.
//
//Author: Thomas R. Turner
//E-Mail: tturner@uco.edu
//Date: September, 2001
//
//Copyright September, 2001 by Thomas R. Turner
//Do not reproduce without permission from Thomas R. Turner
//
//Standard C and C++ includes
I/l
#include <iostream>
#include <fstream>
#include <cstdio>
#include <string>
using namespace std;
//
//Application includes
/l
#include "Scan03.h"
/1
//FileException is thrown when a file whose name is given on the command line
//cannot be opened.
//
struct FileException {
FileException(char* fn)
{ cout << end|;
cout << "File " << fn << " cannot be opened.";

}
L
//
//CommandLineException is thrown when too many arguments are given on the command
//line.

//
struct CommandLineException {

CommandLineException(int ac)

{ cout << endl;

cout << "Too many (" << ac << ") command line arguments.";

}

|3

Figure 7. File p03.cpp

10

Translator Design Lecture 2
CMSC 4173 Lexical analysis and lex
//

//Function Mgr processes the input file stream i

//

void Mgr(FILE* i, ostream& o)
{ Scan L(i);
for (;;) {
int t=L.Lex();
if (t==0) break;
switch (t) {
case INTLIT:
0 << end| << "INTLIT=" << L.FetchSpelling();
break;
case PLUS:
0 << endl << "PLUS =" << L.FetchSpelling();
break;
case MINUS:
o << endl << "MINUS =" << L.FetchSpelling();
break;
case STAR:
o << endl << "STAR =" << L.FetchSpelling();
break;
case SLASH:
0 << endl << "SLASH =" << L.FetchSpelling();
break;
}
}
o << endl;

}

Figure 7. File p03.cpp (continued)

11

Translator Design Lecture 2
CMSC 4173 Lexical analysis and lex

//
//Function main processes command line arguments and opens files specified
//on the command line.
//
int main(int argc,char* argv[])
{ try{
char ifn[255]; //Input File Name
char ofn[255]; //Output File Name
switch (argc) {
case 1: //Prompt for both file names
cout << "Enter the input file name. ";
cin >> ifn;
cout << "Enter the output file name. ";
cin >> ofn;
break;
case 2:
strcpy(ifn,argv[1]);
cout << "Enter the output file name. ";
cin >> ofn;
break;
case 3:
strcpy(ifn,argv[1]);
strcpy(ofn,argv(2]);
break;
default:
throw CommandLineException(argc);

}
FILE* ifp=fopen(ifn,"r"); if (lifp) throw FileException(ifn);
ofstream ofs(ofn); if (lofs) throw FileException(ofn);
Mgr(ifp,ofs);
fclose(ifp);
ofs.close();
}eatch (...){
cout << end|;
cout << "Program terminated.";
exit(EXIT_FAILURE);

}

return O;

}

Figure 7. File p03.cpp(continued)

12

Translator Design Lecture 2
CMSC 4173 Lexical analysis and lex

#ifndef Scan03_h
#define Scan03_h 1
//
// File: Scan03.h

// Description:

// Recognizes integers and arithmetic operators for project 3 in
// Programming Il.

//
// Author: Thomas R. Turner
// E-Mail: trturner.uco.edu
// Date: September, 2003
/]
// Copyright September, 2003 by Thomas R. Turner

// Do not reproduce without permission from Thomas R. Turner.
/]
//
// Standard C and C++ include files
//
#include <cstdio>
#include <fstream>
#include <iostream>
//
//Namespaces
//
using namespace std;
//
//Token code definitions
/]
#define INTLIT 1
#define PLUS 2
#tdefine MINUS 3
#tdefine STAR 4
#tdefine SLASH 5
//
//Function: yylex

//Function yylex is the Scanner. Function yylex returns an integer
//token code as defined above or 0 if end-of-file has been
//reached.

//
#tifdef __cplusplus
extern "C"

#tendif

int yylex (void);

Figure 8. File Scan03.h

13

Translator Design Lecture 2

CMSC 4173 Lexical analysis and lex

//
//Class Scan defines the attributes of a Scanner
/]
class Scan {

int tokencode; //Code for the most recent token found
public:

Scan(FILE* i); //Redirect the input source from the

//keyboard to input file i.
int Lex(void); //Call the scanner yylex and return the code

//found by yylex
int FetchTokenCode(void); //Return the code of the most recent token
void StoreTokenCode(int T); //Store the token code.
char* FetchSpelling(void); //Return the spelling of the most recent
//token
|3
#endif

Figure 8. File Scan03.h (continued)

14

Translator Design
CMSC 4173

Lecture 2
Lexical analysis and lex

%
//
// File: Scan03.1
// Description:
// Contains the most elementary example use of lex for the purpose of
// building a scanner.
/]
// Author: Thomas R. Turner
// E-Mail: trturner@uco.edu
// Date: September, 2003
/]
//Copyright September, 2003 by Thomas R. Turner.
//Do not reproduce without permission from Thomas R. Turner
//
//
// C++ Library Include Files
//
#include <string>
ttinclude <cstdlib>
#include <iostream>
#include <fstream>
using namespace std;
//
// Application Includes
//
#include "Scan03.h"
/]
//Function prototypes
//
int TokenMgr(int T);
//
//Global Variables
/]
%}
%%
[\t\n]+ ;
[+-1?[0-9]+ {
return(TokenMgr(INTLIT));
}
nyn {
return(TokenMgr(PLUS));
}
{
return(TokenMgr(MINUS));
}
W {
return(TokenMgr(STAR));
}
"/ {
return(TokenMgr(SLASH));
}

%%

Figure 9. File Scan03.1

15

Translator Design
CMSC 4173

Lecture 2
Lexical analysis and lex

/]
int TokenMgr(int T)
{ returnT;

}
//
//Class Scan implementation
/]
//Constructor Scan is used to redirect the input file stream from the
//keyboard to input file stream i.

//
Scan::Scan(FILE* i)
{ yyin=i;

}
//
//Function Lex calls yylex
I/
int Scan::Lex(void)

{ return tokencode=yylex();
}
//
//Function FetchSpelling returns a pointer to the spelling of the most
//recent token.

I/
char* Scan::FetchSpelling(void)
{ return (char*)yytext;

}
//
//Function FetchTokenCode returns the code of the most recent token
I/
int Scan::FetchTokenCode(void)
{ return tokencode;

}
//
//Function StoreTokenCode records the most recent token code
//
void Scan::StoreTokenCode(int T)
{ tokencode=T,;

/[~ End of Lex Definition

Figure 9. File Scan03.I (continued)

16

	String spelling
	Integer code name
	Integer code

