
Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 1

1. Print your name in the space labeled NAME.
2. Print CMSC 4023 in the space labeled SUBJECT.
3. Print the test number and version, T3/V1, in the space labeled TEST NO.
4. Print the date, 12-12-2018, in the space labeled DATE.
5. Print your CRN number, 12105, in the space labeled PERIOD.
6. This is a closed-book examination. No reference materials are permitted. No notes are

permitted.
7. You may use your personal calculator on this test. You are prohibited from loaning your

calculator or borrowing a calculator from another person enrolled in this course.
8. You may not consult your neighbors, colleagues, or fellow students to answer the questions

on this test.
9. Cellular phones are prohibited. The possessor of a cellular phone will receive a zero (0) if the

phone rings or is visible during the test.
10. Mark the best selection that satisfies the question. If selection b is better that selections a

and d, then mark selection b. Mark only one selection.
11. Darken your selections completely. Make a heavy black mark that completely fills your

selection.
12. Answer all 50 questions.
13. Record your answers on SCANTRON form 882-E (It is green!)
14. When you have completed the test, place your scantron, face up, between pages 2 and 3 of

your questionnaire and submit both the questionnaire and your scantron to your instructor.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 2

1. (Ch. 1, p. 22) Which of the following is not a fundamental feature of an object-oriented

programming language according to Sebesta?

a. data abstraction
b. inheritance
c. dynamic method binding
d. interface encapsulation

2. (Ch. 1, p. 19) What has been the strongest influence on programming language design over

the past 50 years?

a. imperative programming methodology
b. the von Neumann architecture
c. BNF specification of programming language
d. the exponential growth of memory

3. (Ch. 1, p. 8) Which of the following is not a programming language evaluation criteria

according to Sebesta?

a. syntax design
b. expressivity
c. restricted aliasing
d. type design

4. (Ch. 1, p. 27) Which of the following is NOT a phase of compilation?

a. lexical analysis
b. semantic analysis
c. syntax analysis
d. static analysis

5. (Ch. 1, p. 2-3.) Which of the following is NOT a reason for studying concepts of programming

languages according to Sebesta?

a. Increased capacity to express ideas.
b. Improved background for choosing appropriate languages.
c. Increased ability to design new languages.
d. Increased ability to learn new languages.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 3

6. (Ch. 3, p. 121-122) Given the grammar in the figure below, select the leftmost derivation of
the string a+b*c.

e → t
e → e+t
e → e-t
t → f
t → t*f
t → t/f
t → t%f
f → (e)
f → id

Figure 6.

a. Step Sentential Form Explanation
1 e
2 e+t
3 e+t*f
4 t+f*id(c)
5 f+id(b)*id(c)
6 id(a)*id(b)+Id(c)

b. Step Sentential Form Explanation

1 e
2 e+t
3 e+t*f
4 t+f*id(c)
5 t+id(b)*id(c)
6 f+id(b)*id(c)
7 id(a)+id(b)*id(c)

c. Step Sentential Form Explanation

1 e
2 e+t
3 e+t*f
4 t+t*f
5 f+t*f
6 id(a)+t*f
7 id(a)+f*f
8 id(a)+id(b)*f
9 id(a)+id(b)*id(c)

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 4

d. Step Sentential Form Explanation
1 e
2 e+t
3 t+t
4 f+t
5 id(a)+t
6 id(a)+t*f
7 id(a)+f*f
8 id(a)+id(b)*f
9 id(a)+id(b)*id(c)

7. (Ch. 3, p 120) The first language to employ BNF was

a. Pascal
b. LISP
c. FORTRAN
d. Algol60

8. (Ch. 3. Lecture Notes) Given the grammar in the figure below, select the rightmost

derivation of the string a+b*c.
e → t
e → e+t
e → e-t
t → f
t → t*f
t → t/f
t → t%f
f → (e)
f → id

Figure 8.

a. Step Sentential Form Explanation
1 e
2 e+t
3 e+t*f
4 t+f*id(c)

5 f+id(b)*id(c)
6 id(a)*id(b)+id(c)

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 5

b. Step Sentential Form Explanation
1 e
2 e+t
3 t+t
4 f+t
5 id(a)+t
6 id(a)+t*f
7 id(a)+f*f
8 id(a)+id(b)*f
9 id(a)+id(b)*id(c)

c. Step Sentential Form Explanation

1 e
2 e+t
3 e+t*f
4 t+t*f
5 f+t*f
6 id(a)+t*f
7 id(a)+f*f
8 id(a)+id(b)*f
9 id(a)+id(b)*id(c)

d. Step Sentential Form Explanation

1 e
2 e+t
3 e+t*f
4 e+t*id(c)
5 e+f*id(c)
6 e+id(b)*id(c)
7 t+id(b)*id(c)
8 f+id(b)*id(c)
9 id(a)+id(b)*id(c)

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 6

9. (Project p01 notes) What sequence of tokens is recognized by the regular expressions
shown in the figure below given the input string +123.1?

[+|-]?[0-9]+\.[0-9]*([E|e][+|-]?[0-9]+)?
[+|-]?[0-9]+
\.[0-9]+
“.”
[+|-]
[0-9]+

Figure 9.

a. 3 tokens as follows + 123 .1
b. 1 token as follows +123.1
c. 4 tokens as follows + 123 . 1
d. 2 tokens as follows +123 .1

10. (Ch. 3, p. 125 - 128) Which selection correctly orders the precedence of operators in the

grammar in the figure below? Operators are ordered from left to right, highest to lowest.

e → t
e → e+t
e → e-t
t → f
t → t*f
t → t/f
t → t%f
f → (e)
f → id

Figure 10.

a. () * / % + -
b. + * - / % ()
c. () * + / - %
d. + - * / % ()

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 7

11. (Ch. 4, p. 193) Which of the following grammars is pairwise disjoint?

Id LHS RHS Id LHS RHS
1 A → aB 1 A → aB
2 A → bAb 2 A → BAb
3 A → Bb 3 B → aB
4 B → cB 4 B → b
5 B → d

Figure 11 a. Figure 11 b.
Id LHS RHS Id LHS RHS
1 A → Ba 1 A → Ba
2 A → bAb 2 A → BAb
3 A → bB 3 B → aB
4 B → cB 4 B → b
5 B → d

Figure 11 c. Figure 11 d.

12. (Ch. 4, p. 196) Consider the grammar shown in Figure 12.1, a sentential form in the grammar

shown in Figure 12.2, and a parse tree of the sentence in Figure 12.3. How many phrases
are shown in the parse tree?

e → t
e → e+t
t → f
t → t*f
f → (e)
f → ID
Figure 12.1

e+t*ID

Figure 12.2

e

e + t

t * f

ID
Figure 12.3

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 8

a. 1
b. 2
c. 3
d. 4

13. (Ch. 4, p. 193) Find the FIRST sets for the grammar shown below.

E → TE’
E’ → +TE’
E’ → ε
T → FT’
T’ → *FT’
T’ → ε
F → (E)
F → id

Figure 13

Nonterminal FIRST set Nonterminal FIRST set
E {T} E {(,id}
E’ {+,ε} E’ {+,ε}
T {F} T {(,id}
T’ {*,ε} T’ {*,ε}
F {(,id} F {(,id}

Figure 13 a. Figure 13 b.
Nonterminal FIRST set Nonterminal FIRST set

E {E’} E {(,id}
E’ {E’} E’ {+}
T {T’} T {(,id}
T’ {T’} T’ {*}
F {),id} F {(,id}

Figure 13 c. Figure 13 d.

14. (Ch. 4, p. 191 - 194) Which of the following is a limitation of the LL grammar class?

a. must be implemented by employing a recursive descent parser
b. left recursion must be eliminated
c. lexical analysis must be implemented using finite automata
d. must be implemented using a pushdown automaton

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 9

15. (Ch. 4, p. 193) Find the FOLLOW sets for the grammar shown in Figure 15 below.

Compute FOLLOW(𝐴𝐴) for all nonterminals 𝐴𝐴, by applying the following rules until nothing
can be added to any FOLLOW set.

1. Place $ is FOLLOW(𝑆𝑆), where 𝑆𝑆 is the start symbol and $ is the input right
endmarker.

2. If there is a production 𝐴𝐴 → 𝛼𝛼𝛼𝛼𝛼𝛼, then everything in FIRST(𝛽𝛽) except for ∈, the
empty string, is placed in FOLLOW(𝐵𝐵).

3. If there is a production 𝐴𝐴 → 𝛼𝛼𝛼𝛼, or a production 𝐴𝐴 → 𝛼𝛼𝛼𝛼𝛼𝛼 where FIRST(𝛽𝛽)
contains ∈ (i.e., 𝛽𝛽

∗
⇒ ∈), then everything in FOLLOW(𝐴𝐴) is in FOLLOW(𝐵𝐵).

E → T
E → E or T
T → F
T → T and F
F → (E)
F → not F
F → true
F → false

Figure 15

Nonterminal FOLLOW set Nonterminal FOLLOW set
E {and,or,),$} E {(,not,true,false}
T {and,or,),$} T {(,not,true,false}
F {and,or,),$} F {(,not,true,false}

Figure 15 a. Figure 15 b.
Nonterminal FOLLOW set Nonterminal FOLLOW set

E {or,),$} E {),$}
T {and,or,),$} T {or,),$}
F {and,or,),$} F {and,or,),$}

Figure 15 c. Figure 15 d.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 10

16. (Ch. 5. p 222) Select the correct storage type for variable m.

#include <iostream>
#include <iomanip>
using namespace std;
int max(int A[],int N)
{ int m=A[0];

for (int i=1;i<N;i++) if (A[i]>m) m=A[i];
return m;

}
int main()
{ int A[]={17,2,-3,11,5,-7,-13};

cout << max(A,7) << endl;
return 0;

}
Figure 16 Program for Question 16

a. Static variable
b. Stack-Dynamic variable
c. Explicit Heap-Dynamic variable
d. Implicit Heap-Dynamic variable

17. (Ch. 5. p. 233) What is printed by the program in Figure 17 assuming dynamic scope?

#include <iostream>
using namespace std;
int a,b;
void print(void){cout << "a=" << a << " b=" << b;}
int p(int& a){int p=2;a=0;b=1;return p;}
void q(void){int b=4;a=3;print();}
int main(){a=p(a);q();return 0;}

Figure 17 C++ Program for Question 17

a. a=1 b=3
b. a=2 b=4
c. a=3 b=1
d. a=3 b=4

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 11

18. (Ch. 5 p. 225) What is printed by the program in Figure 18 assuming static scope?

#include <iostream>
using namespace std;
int a,b;
void print(void){cout << "a=" << a << " b=" << b;}
int p(int& a){int p=2;a=0;b=1;return p;}
void q(void){int b=4;a=3;print();}
int main(){a=p(a);q();return 0;}

Figure 18 C++ Program for Question 18

a. a=3 b=4
b. a=2 b=4
c. a=1 b=3
d. a=3 b=1

19. (Ch. 5. p 222) What is the lifetime of variable p declared on line 6 of Figure 19?

1. #include <iostream>
2. using namespace std;
3. int a;
4. int b;
5. int p(int& a)
6. { int p=2;
7. a=0;
8. b=1;
9. return p;

10. }
11. void q(void)
12. { static int b=4;
13. a=3;
14. }
15. int main()
16. { a=p(a); q();
17. return 0;
18. }

Figure 19 Program for Question 19

a. Storage for variable p is allocated when function main is called and its storage is
reclaimed when function main returns.

b. Storage for variable p is allocated during translation and reclaimed when the file
containing executable form of the program in Figure 19 is deleted.

c. Storage for variable p is allocated when function p is called and its storage is reclaimed
when function p returns.

d. Storage for variable p is allocated at load time and reclaimed when the program in
Figure 19 returns control to the operating system.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 12

20. (Ch. 5. p. 277) Assume that each element of array A occupies e bytes, array A has r rows
whose indexes are 1, 2, …, r and c columns whose indexes are 1, 2, …, c. Array A is allocated
in row-major order. Without subscripts A is the address of the first byte allocated. Which
of the following expressions gives the address of the first byte of element A[i][j]?

a. 𝑨𝑨 + ((𝒊𝒊 − 𝟏𝟏) ∙ 𝒄𝒄 + 𝒋𝒋 − 𝟏𝟏) ∙ 𝒆𝒆
b. 𝑨𝑨 + 𝒊𝒊 ∙ 𝒄𝒄 ∙ 𝒆𝒆 + 𝒋𝒋 ∙ 𝒆𝒆
c. 𝑨𝑨 + ((𝒋𝒋 − 𝟏𝟏) ∙ 𝒄𝒄 + 𝒊𝒊 − 𝟏𝟏) ∙ 𝒆𝒆
d. 𝑨𝑨 + 𝒋𝒋 ∙ 𝒄𝒄 ∙ 𝒆𝒆 + 𝒊𝒊 ∙ 𝒆𝒆

21. (Ch. 6. p. 288) Which set of C++ declarations most closely represents the Ada declarations

given in the diagram below?

type Shape is (Circle,Triangle,Rectangle);
type Colors is (Red,Green,Blue);
type Figure (Form:Shape) is

record
Filled:Boolean;
Color:Colors;
case Form is

when Circle =>
Diameter:Float;

when Triangle =>
Left_Side:Integer;
Right_Side:Integer;
Angle:Float;

when Rectangle =>
Side_1:Integer;
Side_2:Integer;

end case;
end record;

Figure 21 Declarations for Question 21

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 13

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};
struct Type_Triangle {
 int Left_Side,Right_Side;
 float Angle;
};
struct Type_Rectangle {
 int Side_1,Side_2;
};
struct Type_Circle {
 float Diameter;
};
struct Type_Form {
 Type_Circle C;
 Type_Triangle T;
 Type_Rectangle R;
};
struct Figure {
 bool Filled;
 Colors Color;
 Shape Form;
 Type_Form F;
};

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};
struct Type_Triangle {
 int Left_Side,Right_Side;
 float Angle;
};
struct Type_Rectangle {
 int Side_1,Side_2;
};
struct Type_Circle {
 float Diameter;
};
union Type_Form {
 Type_Circle C;
 Type_Triangle T;
 Type_Rectangle R;
};
struct Figure {
 bool Filled;
 Colors Color;
 Shape Form;
 Type_Form F;
};

Figure 21 a Figure 21 b

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 14

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};
union Type_Form {
 int Side_1,Side_2;
 float Diameter;
 int Left_Side,Right_Side; float Angle;
};
struct Figure {
 bool Filled;
 Colors Color;
 Shape Form;
 Type_Form F;
};

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};
struct Type_Triangle {
 int Left_Side,Right_Side;
 float Angle;
};
struct Type_Rectangle {
 int Side_1,Side_2;
};
struct Type_Circle {
 float Diameter;
};
struct Type_Form {
 Type_Circle C;
 Type_Triangle T;
 Type_Rectangle R;
};
union Figure {
 bool Filled;
 Colors Color;
 Shape Form;
 Type_Form F;
};

Figure 21 c Figure 21 d

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 15

22. (Ch. 6. p. 293) Which code fragment produces a dangling pointer?

#include <iostream>
using namespace std;
int* f(void)
{ int d;
 return &d;
}
int main()
{ int* p=f();
 return 0;
}

#include <iostream>
using namespace std;
int* f(void){return new int;}
int main()
{ int* p=f();

int q;
p=&q;
return 0;

}

Figure 22 a Figure 22 b
#include <iostream>
using namespace std;
int main()
{ int* p=new int;

int* q=p;
delete q;
return 0;

}

#include <iostream>
using namespace std;
int* f(void){return new int;}
int main()
{ int* p=f();

p=new int;
return 0;

}
Figure 22 c Figure 22 d

23. (Ch. 6. p. 306) Which feature of C++ is primarily responsible for characterizing the language

as NOT strongly typed?

a. mixed-mode coercion
b. user-defined operator overloading
c. polymorphic pointers
d. union types

24. (Ch. 6. p. 259) Which of the following declarations does NOT define an ordinal type?

a. enum color {red, green, blue};
b. type day is ordinal (Mon,Tue,Wed,Thu,Fri,Sat,Sun);
c. subtype Index is Integer range 1..100;
d. char

25. (Ch. 7. p. 324) According to Sebesta, what operator usually associates to the right?

a. exponentiation operator **
b. unary minus -
c. assignment =
d. prefix increment ++

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 16

26. (Ch. 7. p. 332) Which of the following code fragments contains an example of coercion?

#include <string>
using namespace std;
int main()
{ string s="tomat";
 char c='o';
 s=s+c;
 return 0;
}

#include <iostream>
using namespace std;
int main()
{ double x=1.0;

double y=2.0;
int i=(int)(x+y);
return 0;

}
Figure 26 a Figure 26 b

#include <iostream>
using namespace std;
int main()
{ char A=0x20;
 A = A << 1 | 0x01;

cout << A << endl;
return 0;

}

#include <iostream>
using namespace std;
int main()
{ double x=1.0;

double y=x+1;
return 0;

}

Figure 26 c Figure 26 d

27. (Ch. 7. p. 337) Identify the order of evaluation for the expression given in the Figure below?

Please note that expressions are evaluated in the order in which they appear from left to
right. Expressions are separated by commas in the selections below.

int a=0; int b=5;
a>=0||b<5?a=5:b=0;

Figure 27 Expression for Question 27

a. a>=0, b<5, a=5, b=0
b. a>=0, a=5
c. a>=0, b<5, a=5,
d. a>=0, b<5, b=0

28. (Ch. 7. p. 321) Assume the following rules of associativity and precedence for expressions.

Operators Precedence Associativity
*, /, not highest left to right
+, - & mod left to right
- (unary) right to left
=, /=, <, <=, >=, > left to right
and left to right
or, xor lowest left to right

Show the order of evaluation of the expression in the Figure below by parenthesizing all
sub-expressions and placing a superscript on the right parenthesis to indicate the order. For
example, for the expression

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 17

a + b * c + d

the order of evaluation would be represented as

((a + (b * c)1)2 + d)3

(a – b) / c & (d * e / a – f)
Figure 28 Expression for Question 28

a. (((a-b)1/c)5&(((d*e)2/a)3-f)4)6
b. (((a-(b/c)1)2&(((d*e)3/a)4-f)5)6
c. (((a-b)4/c)5&(((d*e)1/a)2-f)3)6
d. (((a-b)1/c)2&(((d*e)3/a)4-f)5)6

29. (Ch. 7. p. 321) Mark the selections that satisfy the relation given in Figure 29.1 for the

grammar of Figure 29.2. Function)(opp returns the precedence of the argument .op
Argument op is an operator in the grammar given in Figure 29.2. The operators given in
the grammar of Figure 29.2 include +, -, unary -, *, /, and ^. The operator, unary-, appears in
production 8.

𝒑𝒑(𝒐𝒐𝒐𝒐𝟏𝟏) ≥ 𝒑𝒑(𝒐𝒐𝒐𝒐𝟐𝟐) ≥ ⋯ ≥ 𝒑𝒑(𝒐𝒐𝒐𝒐𝒏𝒏)|𝒐𝒐𝒐𝒐𝒊𝒊 ∈ {+,−,∗, /,∧,𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖−}
Figure 29.1

1 expression → term
2 expression → term addop expression
3 term → factor
4 term → factor mulop term
5 factor → power
6 factor → power powop factor
7 power → (expression)
8 power → - power
9 power → id
10 addop → +
11 addop → -
12 mulop → *
13 mulop → /
14 powop → ^

Figure 29.2

a. 𝑝𝑝(+) ≥ 𝑝𝑝(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢−) ≥ 𝑝𝑝(∗)
b. 𝑝𝑝(+) ≥ 𝑝𝑝(−) ≥ 𝑝𝑝(∗) ≥ 𝑝𝑝(∧)
c. 𝑝𝑝(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 −) ≥ 𝑝𝑝(−) ≥ 𝑝𝑝(∧)
d. 𝑝𝑝(∧) ≥ 𝑝𝑝(∗) ≥ 𝑝𝑝(/) ≥ 𝑝𝑝(−)

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 18

30. (Ch. 8. p. 359) What programming language feature illustrated in the code fragment below
is prohibited in C#?

switch (value) {
case -1:

Negatives++;
break;

case 0:
Zeros++;
goto case 1;

case 1:
Positives++;

default:
Console.WriteLine(“Default\n”);

}
Figure 30 Code Fragment for Question 30

a. implicit execution of more than one selectable segment
b. unary assignment operators ++ and --.
c. goto statements
d. negative case values.

31. (Ch. 8. p. 373) What programming language contains the grammar given below for a for-

statement?

for-statement → for loop-variable in object statement
for-statement → for loop-variable in object statement else statement

a. CLU.
b. Ada
c. Perl
d. Python

32. (Ch. 8. p. 368) What is the value of variable Count after the Ada code fragment given below

exits the loop?

Count: Float:=1.35;
for Count in 1..10 loop

Sum:=Sum+Count;
end loop;

Figure 32 Program for Question 32

a. 10.35
b. The code fragment fails to compile because Ada does not permit a floating point

variable to be a loop control variable.
c. 1.35
d. 11

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 19

33. (Ch. 8. p. 354) In what language is the following example prohibited?

if (sum==0)
if (count==0)

result=0;
else

result=1;
Figure 33 Code Fragment for Question 33

a. Perl
b. Java
c. C#
d. C++

34. (Ch. 8. p. 353) What is printed when the program below is executed?

#include <iostream>
using namespace std;
int main()
{ int sum=0,result;

if (sum=1) result=0; else result=1;
cout << "sum=" << sum << " result=" << result;
cout << endl;
return 0;

}
Figure 34 Program for Question 34

a. sum=0 result=0
b. sum=0 result=1
c. sum=1 result=0
d. sum=1 result=1

35. (Ch. 8. p. 383) What is the relationship between integer variables m1, m2, and m3 after

exiting the loop containing guarded command proposed by Dkjkstra shown below?

do m1 > m2 -> t:=m1; m1:=m2; m2:=t;
[] m2 > m3 -> t:=m2; m2:=m3; m3:=t;
od

Figure 35 Program for Question 35

a. 𝑚𝑚1 ≤ 𝑚𝑚2 ≤ 𝑚𝑚3
b. 𝑚𝑚3 ≤ 𝑚𝑚2 ≤ 𝑚𝑚1
c. 𝑚𝑚1 < 𝑚𝑚2 < 𝑚𝑚3
d. 𝑚𝑚3 < 𝑚𝑚2 < 𝑚𝑚1

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 20

36. (Ch. 8. p. 388) The multiple-selection statement given in Figure 36.1 is translated to a
multiple-selection statement in Figure 36.2. What is the language employed in Figure 36.2?

if ((k == 1) || (k == 2)) j = 2 * k – 1
if ((k == 3) || (k == 5)) j = 3 * k + 1
if (k == 4) j = 4 * k – 1
if ((k == 6) || (k == 7) || (k == 8)) j = k - 2

Figure 36.1 Multiple-selection statement for Question 36

case k is

when 1..2=> j=2*k-1;
when 3| 5=> j=3*k+1;
when 4=> j=4*k-1;
when 6..8=> j=k-2;

end case;
Figure 36.2 Multiple-selection statement for Question 36

a. Ada
b. Ruby
c. Fortran 95
d. Python

37. (Ch. 7. p. 332) Which of the following code fragments contains an example of coercion?

#include <string>
using namespace std;
int main()
{ string s="tomat";
 char c='o';
 s=s+c;
 return 0;
}

#include <iostream>
using namespace std;
int main()
{ double x=1.0;

double y=2.0;
int i=(int)(x+y);
return 0;

}
Figure 37 a Figure 37 b

#include <iostream>
using namespace std;
int main()
{ char A=0x20;
 A = A << 1 | 0x01;

cout << A << endl;
return 0;

}

#include <iostream>
using namespace std;
int main()
{ double x=1.0;

double y=x+1;
return 0;

}

Figure 37 c Figure 37 d

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 21

38. (Ch. 9 p 427-429) What characteristic of nested subprograms makes this feature undesirable
in modern programming languages?
a. Many programming languages do not allow nested subprograms because it is believed

that it will lead to ambiguity within the program as well as error compilations. If
someone were to declare a subroutine that needed to access variables for two
subprograms and they declare those variables in the global scope, this would be unsafe
because there already may be a variable of the same name there. In this case, global
variables would be a hindrance to readability.

b. Nested subprograms have the potential to cause additional problems over those that
are not nested. Nested subprograms introduce complexity with parameters involving
scope such as whether parameters from one subprogram can be passed to another and
which version of a variable has precedence. Many contemporary languages use more of
an object oriented approach to abstraction which makes it desirable for each part of a
program to do one and only one thing. Nested subprograms tend to widen that scope
so abstraction is lost and multiple operations are happening at once. Often side effect –
unwanted ones for the most part – tend to creep into any more complex section of
code. Not only does complexity increase but with nested subprograms, often,
readability diminishes. With any increase in chance of error, any unwanted side effect,
or decrease in readability the efficiency of the program and of those working with
decreases.

c. Nested subprograms are possibly not included in contemporary languages for two
possible reasons. The first being that nested subprograms can lead to ambiguity in the
programs. The second reason is that nested subprograms can cause serious compilation
errors.

d. Nested subprograms present a challenge for non-local references when subprograms
can be parameters because of the ambiguity of which locality is to be placed in the static
chain. Omitting nested subprograms eliminates the need for a static chain making
subprogram invocation and return simpler and faster.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 22

39. (Ch. 9 p 407-414) Determine the parameter passing method for the code shown in Figure
39.1 given that the values of local variables after the last call to function swap and before
exiting function main is as shown in Figure 39.2.

void swap(int a, int b)
{ int temp

temp=a;
a=b;
b=temp;

}
int main()
{ int value=2,list[5]={1,3,5,7,9};

swap(value,list[0]);
swap(list[0],list[1]);
swap(value,list[value]);
return 0;

}

Figure 39.1 Code for Question 37.

value=2 list={3,2,1,7,9}
Figure 39.2 Variable Values for Question 39.

a. Pass-by-value
b. Pass-by-reference
c. Pass-by value-result.
d. Pass-by-result

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 23

40. (Ch. 9 p. 412) Assume that all values in the FORTRAN program shown in Figure 40 are passed
strictly by reference to enhance performance. What is printed by the program?

PROGRAM MAIN

IMPLICIT NONE
INTEGER :: I
I = 5
CALL S(1,I)
I = I + 1
WRITE(*,*) I
CONTAINS

SUBROUTINE S(A,B)
INTEGER, INTENT (INOUT) :: A, B
A = 2
B = 3

END SUBROUTINE S
END PROGRAM MAIN

Figure 40 Code for Question 40.

a. 2
b. 3
c. 5.
d. 6

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 24

41. (Ch. 9. p 433) What is printed by the program shown below?

#include <iostream>
using namespace std;
template <class T>T mx(T u,T v){return u>v?u:v;}
#define Mx(u,v)((u)>(v))?(u):(v)
int main()
{ int a(1),b(0);
 int c=Mx(a++,b);
 cout << " a=" << a;
 cout << " b=" << b;
 int d=mx(a--,b);
 cout << " a=" << a;
 cout << " b=" << b;
 cout << endl;
 return 0;
}

Figure 41 Code for Question 41.

a. a=3 b=0 a=2 b=0
b. a=2 b=0 a=1 b=0
c. a=2 b=0 a=2 b=0
d. a=1 b=0 a=0 b=0

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 25

42. (Ch. 9, p 428-429) Assuming that deep binding is used to establish the referencing
environment, what is printed by the program shown below?

program q40;
 var x:integer;
 procedure p1;
 var x:integer;
 procedure p2; begin{p2} writeln('x=',x) end{p2};
 procedure p3;
 var x:integer;
 begin x:=3; p4(p2); end{p3};
 procedure p4(procedure px);
 var x:integer;
 begin x:=4;
 px;
 end{p4};
 begin{p1} x:=1;
 p3
 end{p1};
begin
 x:=2;
 p1
end.

Figure 42 Code for Question 42.

a. x=1
b. x=2
c. x=3
d. x=4

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 26

43. (Ch. 10, p 466) Select the Figure showing the stack with all activation record instances,
including static and dynamic chains, when execution reaches position 1 in the following
skeletal program. Assume Bigsub is at level 1?

procedure Bigsub is

procedure A is
procedure B is

begin -- B
… <------------------------------1
end; -- B

procedure C is
begin -- C
…
B;
…
end; -- C

begin -- A
…
C;
…
end; -- A

begin -- Bigsub
…
A;
…
end; -- Bigsub

Figure 43 Code for Question 43.

dynamic link

dynamic link

dynamic link

dynamic link

static link

static link

static link

static link

return to

return to Bigsub

return to A

return to B

ARI for Bigsub

ARI for A

ARI for B

ARI for C

dynamic link

dynamic link

dynamic link

dynamic link

static link

static link

static link

static link

return to

return to Bigsub

return to A

return to C

ARI for Bigsub

ARI for A

ARI for C

ARI for B

Figure 43 a Figure 43 b

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 27

dynamic link

dynamic link

dynamic link

dynamic link

static link

static link

static link

static link

return to

return to Bigsub

return to A

return to B

ARI for Bigsub

ARI for A

ARI for B

ARI for C

dynamic link

dynamic link

dynamic link

dynamic link

static link

static link

static link

static link

return to

return to Bigsub

return to A

return to C

ARI for Bigsub

ARI for A

ARI for C

ARI for B

Figure 43 c Figure 43 d

44. (Ch. 10) What is the maximum number of activation records allocated to execute the

program shown in the Figure below?

program p;
var a:integer;
function f(n:integer):integer;
begin{f} if n<=0 then f:=1 else f:=n*f(n-1) end{f};

begin{p}
a:=f(5)

end{p}.
Figure 33 Code for Question 33.

a. 5
b. 2
c. 7
d. 6

45. (Ch. 10) Mark the selection that identifies all the characteristics required to implement

FORTRAN activation records.

a. storage for local variables, storage for the return address
b. storage for the return address, static links
c. static links, dynamic links
d. storage for local variables, static links

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 28

46. (Ch. 10) Mark the selection that identifies all the characteristics required to implement LISP
activation records.

a. static links, storage for local variables, storage for the return address
b. dynamic links, storage for local variables, storage for the return address
c. static links, dynamic links, storage for the return address
d. static links, dynamic links, storage for local variables

47. (Ch. 10) Mark the selection that identifies all the characteristics required to implement Ada

activation records.

a. static links, storage for local variables, storage for the return address, storage for the

return value.
b. static links, dynamic links, storage for the return address, storage for the return value.
c. static links, dynamic links, storage for local variables, storage for the return value.
d. static links, dynamic links, storage for local variables, storage for the return address

48. (Ch. 10) What dangers are avoided in Java and C# by having implicit garbage collection,

relative to C++?

a. The running environments of Java and C# take care of the destructing process. The risk

of user can create the dangling pointers when explicitly calling the destructor of an
object is avoided.

b. The biggest danger that is being avoided by having implicit garbage collecting is memory
leaks. It is very easy to create a memory leak in C++. Anytime you use the key word new
resources are being allocated. If the previous statement isn’t followed by delete at some
point, then the allocated memory is never freed and will result in a memory leak. In C#
and java, this is done automatically when the resource isn’t being used anymore.

c. The main danger is dangling pointers, causing runtime errors during execution. Another
danger is getting incorrect results, it is possible that the pointer being used could be
pointing to an incorrect value that user did not know about, giving incorrect results as
output as the program runs.

d. The running environments of Java and C# manage destructors. The risk of creating
dangling pointers when explicitly calling the destructor of an object is avoided. Implicit
garbage collection avoids memory leaks that careless C++ programmers usually forget
about.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 29

49. (Ch. 11) What detail of C++ classes fail to satisfy the requirements of an ideal abstract data
type?

a. The internal structure of the class is visible to the client program.
b. Pointers must be employed to implement classes requiring aggregate data.
c. Unnecessary details of the type are hidden from units outside the enclosure that use the

type.
d. The class definition includes only the data representation needed for the type.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 30

50. (Ch. 9) What shortcoming is implemented in the program shown in the figure below?

#include <iostream>
#include <string>
using namespace std;
struct StackException {

StackException(const char* m)
{ cout << endl << "I am the Stack and I am " << m << "." << endl; }

};
class Stack {

struct Element {
Element* prev; string value;
Element(Element* p,string v):prev(p),value(v){}

};
Element* tos;
void Kill(Element* e){ if (e) {delete e;}}

public:
Stack():tos(0){}
~Stack(){Kill(tos);}
bool IsFull(void){return false;}
bool IsEmpty(void){return tos==0;}
void Push(string v)
{ if (IsFull()) throw StackException("full");

Element* e=new Element(tos,v); tos=e;
}
string Pop(void)
{if (IsEmpty()) throw StackException("empty");
Element* e=tos; string v=e->value; tos=e->prev;
delete e;
return v;
}

};
int main()
{ Stack S;

string v[]={"I","like","eels","except","as","meals","and","how","they","feels."};
for (int a=0;a<10;a++) S.Push(v[a]);
for (int a=0;a< 5;a++) cout << endl << S.Pop();
cout << endl;
return 0;

}
Figure 50. Program for question 50.

a. Dangling pointer.
b. Invalid memory reference.
c. None.
d. Memory leak.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

 31

This page is reserved for computations.

