Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

oukwWwNE

10.

11.

12.

13.
14.

Print your name in the space labeled NAME.

Print CMSC 4023 in the space labeled SUBJECT.

Print the test number and version, T3/V1, in the space labeled TEST NO.

Print the date, 12-12-2018, in the space labeled DATE.

Print your CRN number, 12105, in the space labeled PERIOD.

This is a closed-book examination. No reference materials are permitted. No notes are
permitted.

You may use your personal calculator on this test. You are prohibited from loaning your
calculator or borrowing a calculator from another person enrolled in this course.

You may not consult your neighbors, colleagues, or fellow students to answer the questions
on this test.

Cellular phones are prohibited. The possessor of a cellular phone will receive a zero (0) if the
phone rings or is visible during the test.

Mark the best selection that satisfies the question. If selection b is better that selections a
and d, then mark selection b. Mark only one selection.

Darken your selections completely. Make a heavy black mark that completely fills your
selection.

Answer all 50 questions.

Record your answers on SCANTRON form 882-E (It is green!)

When you have completed the test, place your scantron, face up, between pages 2 and 3 of
your questionnaire and submit both the questionnaire and your scantron to your instructor.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

1. (Ch. 1, p. 22) Which of the following is not a fundamental feature of an object-oriented
programming language according to Sebesta?

oo oo

data abstraction
inheritance

dynamic method binding
interface encapsulation

2. (Ch.1, p. 19) What has been the strongest influence on programming language design over
the past 50 years?

o o0 oo

imperative programming methodology

the von Neumann architecture

BNF specification of programming language
the exponential growth of memory

3. (Ch. 1, p. 8) Which of the following is not a programming language evaluation criteria
according to Sebesta?

oo oo

syntax design
expressivity
restricted aliasing
type design

4. (Ch.1, p.27) Which of the following is NOT a phase of compilation?

a0 oo

lexical analysis
semantic analysis
syntax analysis
static analysis

5. (Ch. 1, p. 2-3.) Which of the following is NOT a reason for studying concepts of programming
languages according to Sebesta?

oo oo

Increased capacity to express ideas.

Improved background for choosing appropriate languages.
Increased ability to design new languages.

Increased ability to learn new languages.

Programming Languages
CMSC 4023

6.

CRN 12105

Test 3 Version 1
Autumn 2018

(Ch. 3, p. 121-122) Given the grammar in the figure below, select the leftmost derivation of

the string a+b*c.

e —» t
e — e+t
e — et
t - f
t o> t¥f
t — tff
t o t%f
f - (e
f - id
Figure 6.
a. Step | Sentential Form Explanation
1 e
2 e+t
3 | e+t*f
4 | t+f*id(c)
5 | f+id(b)*id(c)
6 | id(a)*id(b)+Id(c)
b. Step | Sentential Form Explanation
1 e
2 e+t
3 | e+t*f
4 | t+f*id(c)
5 | t+id(b)*id(c)
6 | f+id(b)*id(c)
7 | id(a)+id(b)*id(c)
C. Step | Sentential Form Explanation
1 e
2 e+t
3 | e+t*f
4 | t+t*f
5 | f+t*f
6 | id(a)+t*f
7 | id(a)+f*f
8 id(a)+id(b)*f
9 | id(a)+id(b)*id(c)

Programming Languages
CMSC 4023

7.

CRN 12105

d. Step

Sentential Form

Explanation

1

e

e+t

t+t

fat

id(a)+t

id(a)+t*f

id(a)+f*f

id(a)+id(b)*f

O (NOO LD W|IN

id(a)+id(b)*id(c)

(Ch. 3, p 120) The first language to employ BNF was

a. Pascal

b. LISP

c. FORTRAN
d. Algol60

Test 3 Version 1
Autumn 2018

(Ch. 3. Lecture Notes) Given the grammar in the figure below, select the rightmost
derivation of the string a+b*c.

e — t
e — e+t
e —» e-t
t > f
t o t¥f
t — tff
t > thf
f - (e
f - id
Figure 8.
a. Step | Sentential Form Explanation

1 e

2 e+t

3 e+t*f

4 | t+f*id(c)

5 | f+id(b)*id(c)

6 | id(a)*id(b)+id(c)

Programming Languages

CMSC 4023

CRN 12105

b. Step

Sentential Form

Explanation

1

e

e+t

t+t

fat

id(a)+t

id(a)+t*f

id(a)+f*f

id(a)+id(b)*f

O (NOO LD W|IN

id(a)+id(b)*id(c)

Sentential Form

Explanation

e

e+t

e+t*f

t+t*f

f*f

id(a)+t*f

id(a)+f*f

id(a)+id(b)*f

17
vl |N|loju|dlw(Nn(k|T
o

id(a)+id(b)*id(c)

Sentential Form

Explanation

e

e+t

e+t*f

e+t*id(c)

e+f*id(c)

e+id(b)*id(c)

t+id(b)*id(c)

f+id(b)*id(c)

17
vl |v|loju|dlw|N(k| T
o

id(a)+id(b)*id(c)

Test 3 Version 1
Autumn 2018

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

9.

10.

(Project p01 notes) What sequence of tokens is recognized by the regular expressions
shown in the figure below given the input string +123.1?

[+]-12[0-9]+\.[0-9]*([E| e][+]-]?[0-9]+)?
[+]-1?[0-9]+

\.[0-9]+

[+]-]

[0-9]+

Figure 9.

3 tokens as follows + 123 .1
1 token as follows +123.1

4 tokens as follows + 123 . 1
2 tokens as follows +123 .1

a0 oo

(Ch. 3, p. 125 - 128) Which selection correctly orders the precedence of operators in the
grammar in the figure below? Operators are ordered from left to right, highest to lowest.

t
e+t
e-t
f
t*f
t/f
t%f
(e)
id
Figure 10.

NS+ + + D 0
JIIdIIIId

0%/%+-
+*-/%)
0%+/-%
+-*/%)

a0 oo

Programming Languages
CMSC 4023

CRN 12105

Test 3 Version 1
Autumn 2018

11. (Ch. 4, p. 193) Which of the following grammars is pairwise disjoint?

Id | LHS RHS Id | LHS RHS
1| A |- |aB 1 A — | aB
2| A | - | bAb 2| A | —=|BAb
3| A |- |Bb 3 B |—|aB
4| B | - |cB 4 B |[—=|b
5|/ B |—-|d
Figure 11 a. Figure 11 b.
Id | LHS RHS Id | LHS RHS
1 A — | Ba 1 A — | Ba
2| A | = | bAb 2 A | = | BAb
3| A | > |bB 3 B | —|aB
4| B | > |cB 4 B |—|b
5| B |- |d
Figure 11 c. Figure 11 d.

12. (Ch. 4, p. 196) Consider the grammar shown in Figure 12.1, a sentential form in the grammar
shown in Figure 12.2, and a parse tree of the sentence in Figure 12.3. How many phrases

are shown in the parse tree?

e —»> t

e — e+t

t > f

t o> t¥f

f - (e

f —> ID
Figure 12.1

e+t*ID
Figure 12.2

e

e + t
t * f
ID
Figure 12.3

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018
a. 1
b. 2
c. 3
d 4
13. (Ch. 4, p. 193) Find the FIRST sets for the grammar shown below.
E > TF
E o> +TF
E > ¢
T —> Fr
T — *FT
T > &
F — (E)
F - id
Figure 13
Nonterminal FIRST set Nonterminal FIRST set
E {1} E {(id}
E {+,¢} E {+,¢}
T {F} T {(,id}
r {*,&} r {*,&}
F {(id} F {(id}
Figure 13 a. Figure 13 b.
Nonterminal FIRST set Nonterminal FIRST set
E {E} E {(,id}
E’ {7 E’ {+}
T {T} T {(,id}
r {7} r {*}
F {),id} F {(,id}
Figure 13 c. Figure 13 d.

14. (Ch. 4, p. 191 - 194) Which of the following is a limitation of the LL grammar class?

oo oo

must be implemented by employing a recursive descent parser

left recursion must be eliminated

lexical analysis must be implemented using finite automata
must be implemented using a pushdown automaton

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

15. (Ch. 4, p. 193) Find the FOLLOW sets for the grammar shown in Figure 15 below.

Compute FOLLOW(A) for all nonterminals A, by applying the following rules until nothing
can be added to any FOLLOW set.
1. Place S is FOLLOW(S), where S is the start symbol and $ is the input right
endmarker.
2. Ifthereis a production A — aBp, then everything in FIRST(S) except for €, the
empty string, is placed in FOLLOW(B).
3. Ifthereis a production A — aB, or a production A = aBp where FIRST(f)

contains € (i.e., 8 = €), then everything in FOLLOW(A) is in FOLLOW(B).

E > T
E — EorT
T — F
T — TandFf
F — (E)
F — notf
F — true
F — false
Figure 15
Nonterminal FOLLOW set Nonterminal FOLLOW set
E {and,or,),$} E {(,not,true,false}
[{and,or,),$} T {(,not,true false}
F {and,or,),$} F {(,not,true,false}
Figure 15 a. Figure 15 b.
Nonterminal FOLLOW set Nonterminal FOLLOW set
E {or,),$} E {).$}
T {and,or,),$} T {or,),$}
F {and,or,),$} F {and,or,),$}
Figure 15 c. Figure 15 d.

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

16. (Ch. 5. p 222) Select the correct storage type for variable m.

17.

#include <iostream>
#include <iomanip>
using namespace std;
int max(int A[],int N)

{ int m=A[0];
for (int i=1;i<N;i++) if (A[/]>m) m=Al[i];
return m;

}

int main()

{ intA[]={17,2,-3,11,5,-7,-13};
cout << max(A,7) << endl;

return 0;
}
Figure 16 Program for Question 16

a. Static variable
b. Stack-Dynamic variable
c. Explicit Heap-Dynamic variable
d. Implicit Heap-Dynamic variable
(Ch. 5. p. 233) What is printed by the program in Figure 17 assuming dynamic scope?

#include <iostream>

using namespace std;

int a,b;

void print(void){cout << "a=" << g << " b=" << b;}

int p(int& a){int p=2;a=0;b=1;return p;}

void g(void){int b=4;a=3;print();}

int main(){a=p(a);q();return 0;}

Figure 17 C++ Program for Question 17

a. a=1b=3
b. a=2b=4
c. a=3b=1
d. a=3b=4

10

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

18. (Ch. 5 p. 225) What is printed by the program in Figure 18 assuming static scope?

#include <iostream>
using namespace std;
int a,b;
void print(void){cout << "a=" << g << " b=" << b;}
int p(int& a){int p=2;a0=0;b=1;return p;}
void g(void){int b=4;a=3;print();}
int main(){a=p(a);q();return 0;}
Figure 18 C++ Program for Question 18

a. a=3b=4
b. a=2b=4
c. a=1b=3
d. a=3b=1

19. (Ch. 5. p 222) What is the lifetime of variable p declared on line 6 of Figure 19?

1. #include <iostream>
2. using namespace std;
3. inta;
4. int b;
5. intp(int&a)
6. { intp=2;
7. a=0;
8. b=1;
9. return p;
10. }
11. void g(void)
12. { staticint b=4;
13. a=3;
14. }
15. int main()
16. { a=pla);q();
17. return 0;
18. }

Figure 19 Program for Question 19

a. Storage for variable p is allocated when function main is called and its storage is
reclaimed when function main returns.

b. Storage for variable p is allocated during translation and reclaimed when the file
containing executable form of the program in Figure 19 is deleted.

c. Storage for variable p is allocated when function p is called and its storage is reclaimed
when function p returns.

d. Storage for variable p is allocated at load time and reclaimed when the program in
Figure 19 returns control to the operating system.

11

Programming Languages CRN 12105
CMSC 4023

Test 3 Version 1
Autumn 2018

20. (Ch. 5. p. 277) Assume that each element of array A occupies e bytes, array A has r rows
whose indexes are 1, 2, ..., r and ¢ columns whose indexes are 1, 2, ..., c. Array A is allocated
in row-major order. Without subscripts A is the address of the first byte allocated. Which
of the following expressions gives the address of the first byte of element A[i][j]1?

21.

a. A+((i—-1)-c+j—1)-e
b. A+i-c-e+j-e
c. A+((—-1)c+i—-1)-e
d A+j-creti-e

(Ch. 6. p. 288) Which set of C++ declarations most closely represents the Ada declarations

given in the diagram below?

type Shape is (Circle,Triangle,Rectangle);
type Colors is (Red,Green,Blue);
type Figure (Form:Shape) is
record
Filled:Boolean;
Color:Colors;
case form s
when Circle =>
Diameter:Float;
when Triangle =>
Left_Side:Integer;
Right_Side:Integer;
Angle:Float;
when Rectangle =>
Side_1:Integer;
Side_2:Integer;
end case;
end record;

Figure 21 Declarations for Question 21

12

Programming Languages
CMSC 4023

CRN 12105

Test 3 Version 1
Autumn 2018

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};
struct Type_Triangle {
int Left_Side,Right _Side;
float Angle;
b
struct Type_Rectangle {
int Side_1,Side_2;
b
struct Type Circle {
float Diameter;
b
struct Type_Form {
Type_Circle C;
Type_Triangle T;
Type_Rectangle R;
b
struct Figure {
bool Filled;
Colors Color;
Shape Form;
Type_Form F;
b

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};
struct Type_Triangle {
int Left_Side,Right _Side;
float Angle;
b
struct Type_Rectangle {
int Side_1,Side_2;
b
struct Type Circle {
float Diameter;
b
union Type_Form {
Type_Circle C;
Type_Triangle T;
Type_Rectangle R;
b
struct Figure {
bool Filled;
Colors Color;
Shape Form;
Type_Form F;
b

Figure 21 a

13

Figure21b

Programming Languages
CMSC 4023

CRN 12105

Test 3 Version 1
Autumn 2018

union Type_Form {
int Side_1,Side_2;
float Diameter;

b

struct Figure {
bool Filled;
Colors Color;
Shape Form;
Type_Form F;

b

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};

int Left_Side,Right_Side; float Angle;

enum Shape {Circle,Triangle,Rectangle};
enum Colors {Red,Green,Blue};

struct Type_Triangle {
int Left_Side,Right _Side;
float Angle;

b

struct Type_Rectangle {
int Side_1,Side_2;

b

struct Type Circle {
float Diameter;

b

struct Type_Form {
Type_Circle C;
Type_Triangle T;
Type_Rectangle R;

b

union Figure {
bool Filled;
Colors Color;
Shape Form;
Type_Form F;

b

Figure 21 ¢

14

Figure 21 d

Programming Languages

CMSC 4023

CRN 12105

Test 3 Version 1

Autumn 2018

22. (Ch. 6. p. 293) Which code fragment produces a dangling pointer?

#include <iostream>
using namespace std;

int* flvoid)

{ intg;
return &d;

}

int main()

{ int*p=A);
return 0;

}

#include <iostream>
using namespace std;
int* fvoid){return new int;}

int main()

{ int*p=f();
int g;
p=&g;
return 0;

}

Figure 22 a

Figure 22 b

ttinclude <iostream>
using namespace std;

int main()

{ int* p=new int;
int* g=p;
delete g;
return 0;

}

#include <iostream>
using namespace std;
int* fvoid){return new int;}

int main()

{ int*p=f();
p=new int;
return 0;

}

Figure 22 ¢

Figure 22 d

23. (Ch. 6. p. 306) Which feature of C++ is primarily responsible for characterizing the language

24.

25.

a

a.
b.
C.
d.

s NOT strongly typed?

mixed-mode coercion
user-defined operator overloading
polymorphic pointers

union types

(Ch. 6. p. 259) Which of the following declarations does NOT define an ordinal type?

oo oo

enum color {red, green, blue};

subtype Index is Integer range 1..100;
char

type day is ordinal (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

(Ch. 7. p. 324) According to Sebesta, what operator usually associates to the right?

o o0 oo

exponentiation operator **
unary minus -

assignment =

prefix increment ++

15

Programming Languages
CMSC 4023

CRN 12105

Test 3 Version 1
Autumn 2018

26. (Ch. 7. p. 332) Which of the following code fragments contains an example of coercion?

#include <string>
using namespace std;

int main()

{ string s="tomat";
char c='0’;
S=S5+C;
return 0;

}

#include <iostream>
using namespace std;

int main()

{ double x=1.0;
double y=2.0;
int i=(int)(x+y);
return 0;

}

Figure 26 a

Figure 26 b

ttinclude <iostream>

using namespace std;

int main()

{ char A=0x20;
A=A<<1]| 0x01;
cout << A << endl;
return 0;

#include <iostream>

using namespace std;

int main()

{ double x=1.0;
double y=x+1;
return 0;

Figure 26 ¢

Figure 26 d

27. (Ch. 7. p. 337) Identify the order of evaluation for the expression given in the Figure below?
Please note that expressions are evaluated in the order in which they appear from left to
right. Expressions are separated by commas in the selections below.

int 0=0; int b=5;
a>=0] | b<5?a=5:b=0;

Figure 27 Expression for Question 27

a. a>=0, b<5, a=5, b=0

b. a>=0, a=5

c. a>=0, b<5, a=5,

d. a>=0, b<5, b=0

28. (Ch. 7. p. 321) Assume the following rules of associativity and precedence for expressions.

Operators Precedence Associativity
* /, not highest left to right
+, - & mod left to right
- (unary) right to left
=, /5, <, <=, 3=, > left to right
and left to right
or, xor lowest left to right

Show the order of evaluation of the expression in the Figure below by parenthesizing all
sub-expressions and placing a superscript on the right parenthesis to indicate the order. For

example, for the expression

16

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

a+b*c+d
the order of evaluation would be represented as

((a+(b*c))+d)?

‘ (a-b)/c&(d*e/a-])
Figure 28 Expression for Question 28

(((a-b)*/c)*&(((d*e)?/a)*-)*)°
(((a-(b/c)) &(((d*e)*/a)*-f)%)®
(((a-b)*/c)°&(((d*e)*/a)*-f)?)°
(((a-b)*/c)?&(((d*e)*/a)*-f)%)®

Qa 0 T o

29. (Ch. 7. p. 321) Mark the selections that satisfy the relation given in Figure 29.1 for the
grammar of Figure 29.2. Function p(op) returns the precedence of the argument 0op.

Argument 0p is an operator in the grammar given in Figure 29.2. The operators given in

the grammar of Figure 29.2 include +, -, unary -, *, /, and ~. The operator, unary-, appears in
production 8.

| p(op;y) = p(opy) = -+ = p(opy)|op; € {+,—* /A unary—}

Figure 29.1

1 expression — term
2 expression — term addop expression
3 term — factor
4 term — factor mulop term
5 factor — power
6 factor — power powop factor
7 power — [expression)
8 power — -power
9 power - id
10 addop - o+
11 addop - -
12 mulop - %
13 mulop - /
14 powop - A

Figure 29.2

p(+) = p(unary—) = p(*)

p(+) = p(-) 2 p(x) = p(n)
p(unary —) = p(-) = p(»)
p(n) 2p(x) 2p(/) =p(-)

a0 oo

17

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

30. (Ch. 8. p. 359) What programming language feature illustrated in the code fragment below
is prohibited in C#?

switch (value) {

case -1:
Negatives++;
break;

case 0:
Zeros++;
goto case 1;

case 1:
Positives++;

default:
Console.WriteLine(“Default\n”);

Figure 30 Code Fragment for Question 30

implicit execution of more than one selectable segment
unary assignment operators ++ and --.

goto statements

negative case values.

a0 oo

31. (Ch. 8. p. 373) What programming language contains the grammar given below for a for-
statement?

for-statement | — | for loop-variable in object statement

for-statement | — | for loop-variable in object statement else statement

a. CLU.
b. Ada
c. Perl
d. Python

32. (Ch. 8. p. 368) What is the value of variable Count after the Ada code fragment given below
exits the loop?

Count: Float:=1.35;
for Count in 1..10 loop

Sum:=Sum+Count;
end loop;

Figure 32 Program for Question 32

10.35

b. The code fragment fails to compile because Ada does not permit a floating point
variable to be a loop control variable.

c. 135

d. 11

o

18

Programming Languages CRN 12105 Test 3 Version 1

CMSC 4023 Autumn 2018
33. (Ch. 8. p. 354) In what language is the following example prohibited?
if (sum==0)
if (count==0)
result=0;
else
result=1;
Figure 33 Code Fragment for Question 33
a. Perl
b. Java
c. CH#
d. C++

34.

35.

(Ch. 8. p. 353) What is printed when the program below is executed?

#include <iostream>

using namespace std;

int main()

{ intsum=0,result;
if (sum=1) result=0; else result=1;
cout << "sum=" << sum << " result=" << result;
cout << endl;

return 0;
}
Figure 34 Program for Question 34
a. sum=0 result=0
b. sum=0 result=1
c. sum=1 result=0
d. sum=1 result=1

(Ch. 8. p. 383) What is the relationship between integer variables m1, m2, and m3 after
exiting the loop containing guarded command proposed by Dkjkstra shown below?

do ml1>m2->t:=ml1; ml:=m2; m2:=t;
[m2>m3->t:=m2; m2:=m3; m3:=t;

od
Figure 35 Program for Question 35
a. ml<m2<m3
b. m3<m2<ml
c. ml<m2<m3
d m3<m2<ml

19

Programming Languages CRN 12105

CMSC 4023

Test 3 Version 1
Autumn 2018

36. (Ch. 8. p. 388) The multiple-selection statement given in Figure 36.1 is translated to a
multiple-selection statement in Figure 36.2. What is the language employed in Figure 36.27?

if((k==1) [l (k==2))j=2%k-1
if((k==3) || (k==5))j=3*k+1
if(k==4)j=4*k-1
if ((k==6) || (k==7) || (k==8))j=k-2
Figure 36.1 Multiple-selection statement for Question 36

case k is
when 1..2=> j=2%k-1;
when 3| 5=> j=3*k+1;
when 4=> j=4%k-1;
when 6..8=> j=k-2;

end case;
Figure 36.2 Multiple-selection statement for Question 36
a. Ada
b. Ruby
c. Fortran 95
d. Python

37. (Ch. 7. p. 332) Which of the following code fragments contains an example of coercion?

#include <iostream>
using namespace std;

#include <string>
using namespace std;

int main() int main()

{ string s="tomat"; { double x=1.0;
char c='o'; double y=2.0;
S=S+¢; int i=(int)(x+y);
return 0; return 0;

} }

Figure 37 a

Figure37 b

ttinclude <iostream>

using namespace std;

int main()

{ char A=0x20;
A=A<<1]| 0x01;
cout << A << endl;
return 0;

#tinclude <iostream>

using namespace std;

int main()

{ double x=1.0;
double y=x+1;
return 0;

Figure 37 ¢

Figure 37 d

20

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

38. (Ch. 9 p 427-429) What characteristic of nested subprograms makes this feature undesirable
in modern programming languages?

a.

Many programming languages do not allow nested subprograms because it is believed
that it will lead to ambiguity within the program as well as error compilations. If
someone were to declare a subroutine that needed to access variables for two
subprograms and they declare those variables in the global scope, this would be unsafe
because there already may be a variable of the same name there. In this case, global
variables would be a hindrance to readability.

Nested subprograms have the potential to cause additional problems over those that
are not nested. Nested subprograms introduce complexity with parameters involving
scope such as whether parameters from one subprogram can be passed to another and
which version of a variable has precedence. Many contemporary languages use more of
an object oriented approach to abstraction which makes it desirable for each part of a
program to do one and only one thing. Nested subprograms tend to widen that scope
so abstraction is lost and multiple operations are happening at once. Often side effect —
unwanted ones for the most part — tend to creep into any more complex section of
code. Not only does complexity increase but with nested subprograms, often,
readability diminishes. With any increase in chance of error, any unwanted side effect,
or decrease in readability the efficiency of the program and of those working with
decreases.

Nested subprograms are possibly not included in contemporary languages for two
possible reasons. The first being that nested subprograms can lead to ambiguity in the
programs. The second reason is that nested subprograms can cause serious compilation
errors.

Nested subprograms present a challenge for non-local references when subprograms
can be parameters because of the ambiguity of which locality is to be placed in the static
chain. Omitting nested subprograms eliminates the need for a static chain making
subprogram invocation and return simpler and faster.

21

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

39. (Ch. 9 p 407-414) Determine the parameter passing method for the code shown in Figure
39.1 given that the values of local variables after the last call to function swap and before
exiting function main is as shown in Figure 39.2.

void swap(int g, int b)

{ inttemp
temp=a;
a=b;
b=temp;

}

int main()

{ intvalue=2,list[5]={1,3,5,7,9};
swap(value,list[0]);
swap(list[0],list[1]);
swap(value,list[value]);
return 0;

Figure 39.1 Code for Question 37.

value=2 list={3,2,1,7,9}
Figure 39.2 Variable Values for Question 39.

Pass-by-value
Pass-by-reference
Pass-by value-result.

Qa 0 T o

Pass-by-result

22

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

40. (Ch. 9 p. 412) Assume that all values in the FORTRAN program shown in Figure 40 are passed
strictly by reference to enhance performance. What is printed by the program?

PROGRAM MAIN
IMPLICIT NONE
INTEGER :: |
=5
CALL S(1,1)
l=1+1
WRITE(*,*) |
CONTAINS
SUBROUTINE S(A,B)
INTEGER, INTENT (INOUT) :: A, B
A=2
B=3
END SUBROUTINE S
END PROGRAM MAIN

Figure 40 Code for Question 40.

o O T o
o v w N

23

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

41. (Ch. 9. p 433) What is printed by the program shown below?

#include <iostream>
using namespace std;
template <class T>T mx(T u,T v){return u>v?u:v;}
#define Mx(u,v)((u)>(v))?(u):(v)
int main()
{ inta(1),b(0);

int c=Mx(a++,b);

cout<<" a="<<gqg;

cout << " b=" << b;

int d=mx(a--,b);

cout<<" a="<<g;

cout << " b=" << b;

cout << endl,

return O;
}
Figure 41 Code for Question 41.
a. a=3b=0a=2b=0
b. a=2b=0a=1b=0
c. a=2b=0a=2b=0
d. a=1b=0a=0b=0

24

Programming Languages
CMSC 4023

CRN 12105

Test 3 Version 1
Autumn 2018

42. (Ch. 9, p 428-429) Assuming that deep binding is used to establish the referencing

environment, what is printed by the program shown below?

Qa 0 T o

program g40;
var x:integer;
procedure p1;

var x:integer;

procedure p2; begin{p2} writeln('x=",x) end{p2};

procedure p3;
var x:integer;
begin x:=3; p4(p2); end{p3};
procedure p4(procedure px);
var x:integer;
begin x:=4;
pX;
end{p4};

begin{p1} x:=1;
p3
end{pl};
begin
X:=2;
pl
end.

x=1
x=2
x=3
x=4

Figure 42 Code for Question 42.

25

Programming Languages CRN 12105

CMSC 4023

Test 3 Version 1
Autumn 2018

43. (Ch. 10, p 466) Select the Figure showing the stack with all activation record instances,
including static and dynamic chains, when execution reaches position 1 in the following

skeletal program. Assume Bigsub is at level 1?

procedure Bigsub is
procedure Ais

procedure B is
begin -- B
we < 1
end; --B

procedure Cis
begin -- C

B;

end; --C
begin -- A
G

end; - A
begin -- Bigsub

A;

end; -- Bigsub

Figure 43 Code for Question 43.

4 static link 4 static link
ARl for C dynamic link ARI for B dynamic link
v return to B v return to C
4 static link > 4 static link >
ARI for B dynamic link > ARI for C dynamic link >
v return to A P v return to A P
static link static link
ARI for A dynamic link » ARl for A dynamic link >
v return to Bigsub | v return to Bigsub |
‘ static link ‘ static link
ARl for Bigsub dynamic link ARl for Bigsub dynamic link
v return to v return to
Figure43 a Figure43 b

26

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018
static link static link
ARl for C dynamic link ARI for B dynamic link
return to B return to C
static link > static link >
ARI for B dynamic link > ARI for C dynamic link >
return to A return to A
static link static link
ARI for A dynamic link > ARI for A dynamic link >
return to Bigsub return to Bigsub
static link static link
ARl for Bigsub dynamic link ARl for Bigsub dynamic link
return to return to
Figure 43 ¢ Figure 43 d

44. (Ch. 10) What is the maximum number of activation records allocated to execute the
program shown in the Figure below?

program p;
var a:integer;
function f(n:integer):integer;
begin{f} if n<=0 then f:=1 else f:=n*f(n-1) end{f};

begin{p}
a:=f(5)
end{p}.
Figure 33 Code for Question 33.

a. 5
b. 2
c. 7
d. 6

45. (Ch. 10) Mark the selection that identifies all the characteristics required to implement
FORTRAN activation records.

storage for local variables, storage for the return address
storage for the return address, static links
static links, dynamic links

Qa 0 T o

storage for local variables, static links

27

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

46. (Ch. 10) Mark the selection that identifies all the characteristics required to implement LISP
activation records.

47.

48.

o 0o T o

static links, storage for local variables, storage for the return address
dynamic links, storage for local variables, storage for the return address
static links, dynamic links, storage for the return address

static links, dynamic links, storage for local variables

(Ch. 10) Mark the selection that identifies all the characteristics required to implement Ada
activation records.

static links, storage for local variables, storage for the return address, storage for the
return value.

static links, dynamic links, storage for the return address, storage for the return value.
static links, dynamic links, storage for local variables, storage for the return value.
static links, dynamic links, storage for local variables, storage for the return address

(Ch. 10) What dangers are avoided in Java and C# by having implicit garbage collection,
relative to C++?

The running environments of Java and C# take care of the destructing process. The risk
of user can create the dangling pointers when explicitly calling the destructor of an
object is avoided.

The biggest danger that is being avoided by having implicit garbage collecting is memory
leaks. It is very easy to create a memory leak in C++. Anytime you use the key word new
resources are being allocated. If the previous statement isn’t followed by delete at some
point, then the allocated memory is never freed and will result in a memory leak. In C#
and java, this is done automatically when the resource isn’t being used anymore.

The main danger is dangling pointers, causing runtime errors during execution. Another
danger is getting incorrect results, it is possible that the pointer being used could be
pointing to an incorrect value that user did not know about, giving incorrect results as
output as the program runs.

The running environments of Java and C# manage destructors. The risk of creating
dangling pointers when explicitly calling the destructor of an object is avoided. Implicit
garbage collection avoids memory leaks that careless C++ programmers usually forget
about.

28

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

49. (Ch. 11) What detail of C++ classes fail to satisfy the requirements of an ideal abstract data
type?

a. The internal structure of the class is visible to the client program.
Pointers must be employed to implement classes requiring aggregate data.

c. Unnecessary details of the type are hidden from units outside the enclosure that use the
type.

d. The class definition includes only the data representation needed for the type.

29

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

50. (Ch. 9) What shortcoming is implemented in the program shown in the figure below?

#tinclude <jostream>
#include <string>
using namespace std;
struct StackException {
StackException(const char* m)
{ cout<<endl<<"lam the Stackand lam " << m<<"." << endl;}
b
class Stack {
struct Element {
Element* prev; string value;
Element(Element* p,string v):prev(p),value(v){}
b
Element* tos;
void Kill(Element* e){ if (e) {delete e;}}
public:
Stack():tos(0){}
~Stack(){Kill(tos);}
bool IsFull(void){return false;}
bool IsEmpty(void){return tos==0;}
void Push(string v)
{ if (/sFull()) throw StackException("full");
Element* e=new Element(tos,v); tos=e;
}
string Pop(void)
{if (IsEmpty()) throw StackException("empty");
Element* e=tos; string v=e->value; tos=e->prev;
delete ¢;
return v;
}
b
int main()
{ Stacks;
string v[]={"1","like","eels","except","as","
for (int 0=0;0<10;a++) S.Push(v[a]);
for (int a=0;a< 5;a++) cout << end| << S.Pop();
cout << endl;
return 0;

meals","and","how","they","feels."};

Figure 50. Program for question 50.

Dangling pointer.
Invalid memory reference.
None.

Qa 0 T o

Memory leak.

30

Programming Languages CRN 12105 Test 3 Version 1
CMSC 4023 Autumn 2018

This page is reserved for computations.

31

