
Programming Languages Python Programming Language
CMSC 4023

1

#--
File prime.py finds the first 100 prime numbers
#--
Author: Thomas R Turner
E-Mail: trturner@uco.edu
Date: January, 2019
#--
from math import sqrt
def isPrime(c) :
 factor=3
 maxfactor=sqrt(c)
 while factor<=maxfactor :
 if c%factor==0 :
 return False
 factor=factor+2
 return True
primecount=100
print("%5d" % (2),end="")
count=1
candidate=3
while count<primecount :
 if isPrime(candidate) :
 count=count+1
 print("%5d" % candidate,end="")
 if count%10==0 :
 print()
 candidate=candidate+2

File ~tt/cs4023/python/prime.py

$ python3 prime.py
 2 3 5 7 11 13 17 19 23 29
 31 37 41 43 47 53 59 61 67 71
 73 79 83 89 97 101 103 107 109 113
 127 131 137 139 149 151 157 163 167 173
 179 181 191 193 197 199 211 223 227 229
 233 239 241 251 257 263 269 271 277 281
 283 293 307 311 313 317 331 337 347 349
 353 359 367 373 379 383 389 397 401 409
 419 421 431 433 439 443 449 457 461 463
 467 479 487 491 499 503 509 521 523 541

Execution of prime.py
Notes:

1. Blocks are indented
2. Subprograms begin with def
3. Semicolons are not used to terminate statements
4. Print statements

4.1. Formatted similar to C write.
4.2. The argument end=”” suppresses the new line character.
4.3. The general form is: print(“%format specification” % (variables | values))

Programming Languages Python Programming Language
CMSC 4023

2

#---
Author: Thomas R Turner
E-Mail: trturner@uco.edu
Date: April, 2019
#--
Usage
python3 args.py one two three four
#---
Output
one
two
three
four
#---
Copyright: April, 2019 by Thomas R Turner.
Do not reproduce without permission from Thomas R Turner
#---
from sys import argv
def main() :
 for i in range(1,len(argv)):
 print(argv[i])
#--
Start the program
#--
main()

File ~tt/cs4023/python/args.py

$ python3 args.py one two three four
one
two
three
four

Execution of args.py

Programming Languages Python Programming Language
CMSC 4023

3

#--
File readfile.py
- opens a file
- reads the file
- prints the contents to the display
- closes the file
#--
Author: Thomas R Turner
E-Mail: trturner@uco.edu
Date: April, 2019
#--
infile=open("i01.dat","r")
line=infile.readline()
while line !="" :
 print(line)
 line=infile.readline()
infile.close()

File ~tt/cs4023/python/readfile.py

one, two, buckle my shoe
three, four, shut the door
five, six, pick up sticks
seven, eight, lay them straight

File ~tt/cs4023/ python/i01.dat

$ python3 readfile.py
one, two, buckle my shoe

three, four, shut the door

five, six, pick up sticks

seven, eight, lay them straight

Execution of readfile.py

Programming Languages Python Programming Language
CMSC 4023

4

#--
File files.py
- opens a file
- reads the file
- writes the file
- closes the file
#--
Author: Thomas R Turner
E-Mail: trturner@uco.edu
Date: April, 2019
#--
infile=open("i01.dat","r")
outfile=open("o01.dat","w")
line=infile.readline()
while line !="" :
 outfile.write("%s" % (line))
 line=infile.readline()
outfile.close()
infile.close()

File ~tt/cs4023/python/readwrite.py

$ python3 readwrite.py
Execution of readwrite.py

one, two, buckle my shoe
three, four, shut the door
five, six, pick up sticks
seven, eight, lay them straight

File ~tt/cs4023/python/o01.dat

Programming Languages Python Programming Language
CMSC 4023

5

#---
File exception01.py explores exceptions and handlers
#---
Author: Cay Horstman
#---
try :
 filename = input("Enter filename: ")
 infile = open(filename, "r")
except IOError :
 print("Error: " + filename + " could not be opened.")

File ~tt/cs4023/python/exception01.py

$ python3 exception01.py
Enter filename: zafira
Error: zafira could not be opened.

Execution of exception01.py

#---
File exception02.py explores exceptions and handlers
#---
Author: Cay Horstman
#---
try :
 raise BufferError("Stack Overflow")
except BufferError as exception :
 print("Error: " + str(exception))

File ~tt/cs4023/python/exception02.py

$ python3 exception02.py
Error: Stack Overflow

Execution of exception02.py

Programming Languages Python Programming Language
CMSC 4023

6

#--
File string.py exercises various string operations
#--
Author: Thomas R Turner
E-Mail: trturner@uco.edu
Date: April, 2019
#--
Copyright April, 2019 by Thomas R Turner
Do not reproduce without permission from Thomas R Turner
#--
christianname="Niklaus"
sirname="Wirth"
wholename=christianname+" "+sirname
print(wholename)
for letter in wholename :
 print(letter)

File ~tt/cs4023/python/string.py

tt@CS:~/cs4023/python$ python3 string.py
Niklaus Wirth
N
i
k
l
a
u
s

W
i
r
t
h

Execution of string.py

Programming Languages Python Programming Language
CMSC 4023

7

#---
The selectionSort function sorts a list using the selection sort algorithm
#---
Author: Cay Horstmann
#---
Sorts a list, using selection sort
#---
def selectionSort(values) :
 for i in range(len(values)) :
 minPos = minimumPosition(values,i)
 temp = values[minPos]
 values[minPos] = values[i]
 values[i] = temp
#---
Finds the smallest element in a tailrange of the list
#---
def minimumPosition(values,start) :
 minPos = start
 for i in range(start+1,len(values)) :
 if values[i] < values[minPos] :
 minPos = i

 return minPos
#---

File ~tt/cs4023/python/selectionsort.py

#---
This program demonstrates the selection sort algorithm
by sorting a list that is filled with random numbers
#---
Author: Cay Horstmann
#---
from random import randint
from selectionsort import selectionSort

n=20
values = []
for i in range(n) :
 values.append(randint(1,100))
print(values)
selectionSort(values)
print(values)

File ~tt/cs4023/python/selectiondemo.py

$ python3 selectiondemo.py
[60, 17, 11, 52, 15, 3, 56, 61, 98, 27, 98, 18, 11, 78, 43, 88, 3, 9, 66, 38]
[3, 3, 9, 11, 11, 15, 17, 18, 27, 38, 43, 52, 56, 60, 61, 66, 78, 88, 98, 98]

Execution of selectiondemo.py

Programming Languages Python Programming Language
CMSC 4023

8

#--
Models a tally counter whose value can be incremented, viewed, or reset
#--
Author: Cay Horstmann
#--
class Counter :
 # Gets the current value of the counter.
 # @return the current value
 #
 def getValue(self) :
 return self._value
 #
 # Advances the value of this counter by 1
 #
 def click(self) :
 self._value = self._value + 1
 #
 # Resets the value of this counter to 0.
 #
 def reset(self) :
 self._value = 0

File ~tt/cs4023/python/counter.py

#--
This program exercises class Counter
#--
Author: Cay Horstmann
from counter import Counter

tally = Counter() # Invoke the constructor
tally.reset()
tally.click()
tally.click()

result = tally.getValue()
print("Value:",result)

tally.click()
result = tally.getValue()
print("Value:",result)

File ~tt/cs4023/python/counterdemo.py

$ python3 counterdemo.py
Value: 2
Value: 3

Execution of counterdemo.py

Programming Languages Python Programming Language
CMSC 4023

9

Notes:
1. By convention, instance variables in Python start with an underscore to indicate that they

should be private. Example: _value
2. Member functions are called methods
3. The first parameter of a method is called self.
4. Instance variables are not explicitly declared. Instance variables are defined when a value is

assigned to an instance variable.
def reset(self)

self._value=0

