
Translator Design p02overview
CMSC 4173 File t01.mcr

Figure 1. Execution Overview

p02lex.l p02par.yp02.cpp

lex
lex p02lex.l

mv lex.yy.c p02lex.cpp

yacc
yacc -d -v p02par.y

mv y.tab.c p02par.cpp

C++ Compiler
g++ -c -g p02.cpp

p02lex.cpp p02par.cpp

C++ Compiler
g++ -c -g p02lex.cpp

C++ Compiler
g++ -c -g p02par.cpp

p02.o p02lex.o p02par.o

Linkage Editor
g++ -o p02 p02.o p02lex.o p02par.o -ly -lm

p02

Figure 2. Compilation Overview

#--
File makep02 contains instructions for creating file p02,
#--
Author: Thomas R. Turner
E-Mail: trturner@ucok.edu
Date: March, 2007
#--
Copyright March, 2007 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.
#--
Object files
#--
obj = p02.o p02par.o p02lex.o
#--
p02: ${obj}
 g++ -o p02 ${obj} -ly -lm

Figure 3. File p02make (continued)

ParserLexical
Analysis

token

yylex()

parse tracesource program

Translator Design p02overview
CMSC 4173 File t01.mcr

#--
File p02par.cpp processes command line arguments
#--
p02.o: p02.cpp p02lex.h p02par.h
 g++ -c -g p02.cpp
#--
File p02lex.l is the lexical analyzer
#--
p02lex.cpp: p02lex.l

lex p02lex.l
mv lex.yy.c p02lex.cpp

#--
File p02lex.cpp is created by lex in the previous step
#--
p02lex.o: p02lex.cpp p02lex.h y.tab.h

g++ -c -g p02lex.cpp
#--
File p02par.cpp is the C++ parser created by yacc
#--
p02par.o: p02par.cpp p02par.h
 g++ -c -g p02par.cpp
#--
File p02par.y contains the specification of the Subset Pascal
Parser in a format acceptable to yacc
#--
y.tab.h\
p02par.cpp: p02par.y

yacc -d -v p02par.y
mv y.tab.c p02par.cpp

#--
Figure 3. File p02make (continued)

Translator Design p02overview
CMSC 4173 File t01.mcr

 left side right side
1 program → begin statement-list end
2 statement-list → statement
3 statement-list → statement-list statement
4 statement → id := expression ;
5 statement → read (id-list) ;
6 statement → write (expression-list) ;
7 id-list → id
8 id-list → id-list , id
9 expression-list → expression
10 expression-list → expression-list , expression
11 expression → primary
12 expression → expression additive-operator primary
13 primary → (expression)
14 primary → id
15 primary → intlit
16 additive-operator → +
17 additive-operator → -

Table 1. Set of productions for the micro grammar of Example 2.

Translator Design p02overview
CMSC 4173 File t01.mcr

Yacc is a tool that will generate a parser given an LR(0) grammar.

Structure of a Yacc Grammar

… definition section …
%%
… rules section …
%%
… user subroutine section …

Symbol Conventions

Typically, non-terminal symbols are given in lowercase and terminal symbols are assigned all
capital letters. For example, the rule:

program → program-head declarations program-body .

would be expressed for a yacc grammar as

program:
 program_head declarations program_body PERIOD

Note that hyphens have been changed to underscores to satisfy the C++ rules for identifiers
and the period at the extreme right on the right hand side (RHS) of the rule has been
changed to a capitalized spelling.

Definition Section

The definition section can contain

• literal block
Declarations necessary for grammar actions and user subroutines are placed in the
literal block. The literal block includes all .h files. A literal block is enclosed between
%{ and %} on separate lines as shown below.
%{
… C++ macro preprocessor definitions, declarations, and code …
%}

• %token declarations
%token declarations are used to define terminal symbols. Terminal symbols defined
by %token declarations are made available to a scanner implemented using lex. File
y.tab.h is created when yacc is invoked. File y.tab.h assigns positive integer values
to terminal symbols defined using %token declarations. The values assigned to the
terminal symbols are their token codes not the actual values represented by the
token. A token is an integer code and a spelling. The spelling is the string of
characters recognized by the scanner for that token.

To make the strings recognized by the scanner available to the parser for the
example above, you must add the following statement to the scanner.

Translator Design p02overview
CMSC 4173 File t01.mcr

Variable yytext has type char* and points to the most recent string of characters
recognized by the scanner.

Rules Section

The rules section contains
• grammar rules

A rule of the grammar has a Left Hand Side (LHS) and a Right Hand Side (RHS). For
example, consider the following expression grammar below with actions enclosed
between { and }.

• actions containing C++ code

%token PLUS
%token MINUS
%token LPAREN
%token RPAREN
%token COMMA
%token SEMICOLON
%token ASSIGN
%token INTLIT
%token ID
%token READ
%token WRITE
%token BEGAN
%token END
%%
program:

BEGAN statement_list END
{tfs << endl << “#001 program -> begin statement-list end” ;
}

statement_list:
statement
{tfs << endl << “#002 statement-list -> statement”;
}

statement_list:
statement_list statement
{tfs << endl << “#003 statement-list -> statement-list statement”;
}

statement:
ID ASSIGN expression SEMICOLON
{tfs << endl << “#004 statement -> := expression ;”;
}

statement:
 READ LPAREN id_list RPAREN SEMICOLON
{tfs << endl << “#005 statement -> READ (id-list) ;”;
}

Translator Design p02overview
CMSC 4173 File t01.mcr

statement:
 WRITE LPAREN expression_list RPAREN SEMICOLON
{tfs << endl << “#006 statement -> WRITE (expression-list) ;”; }

id_list:
ID
{tfs << endl << “#007 id-list -> ID”; }

id_list:
id_list COMMA ID
{tfs << endl << “#008 id-list -> id-list , ID”; }

expression_list:
expression
{tfs << endl << “#009 expression-list -> expression”; }

expression_list:
expression_list COMMA expression
{tfs << endl << “#010 expression-list -> expression-list , expression”; }

expression:
primary
{tfs << endl << “#011 expression -> primary”; }

expression:
expression additive-operator primary
{tfs << endl << “#012 expression -> expression additive-operator primary”; }

primary:
LPAREN expression RPAREN
{tfs << endl << “#013 primary -> (expression)”; }

primary:
ID
{tfs << endl << “#014 primary -> ID”; }

primary:
INTLIT
{tfs << endl << “#015 primary -> INTLIT”; }

additive-operator:
PLUS
{tfs << endl << “#016 additive-operator -> +”; }

additive-operator:
MINUS
{tfs << endl << “#017 additive-operator -> -”; }

Translator Design p02overview
CMSC 4173 File t01.mcr

begin read(x); x:=x+2; write(x) end

Translator Design p02overview
CMSC 4173 File t01.trc

Token:Code=267 Name= BEGIN line= 1 col= 1 Spelling="begin"
Token:Code=269 Name= READ line= 1 col= 7 Spelling="read"
Token:Code=263 Name= LPAREN line= 1 col= 11 Spelling="("
Token:Code=273 Name=IDENTIFIER line= 1 col= 12 Spelling="x"
#007 IDENTIFIER_list->IDENTIFIER
Token:Code=264 Name= RPAREN line= 1 col= 13 Spelling=")"
#005 READ (IDENTIFIER_list)
#002 statement_list->statement
Token:Code=262 Name= SEMICOLON line= 1 col= 14 Spelling=";"
Token:Code=273 Name=IDENTIFIER line= 1 col= 16 Spelling="x"
Token:Code=265 Name= ASSIGN line= 1 col= 17 Spelling=":="
Token:Code=273 Name=IDENTIFIER line= 1 col= 19 Spelling="x"
#014 primary->IDENTIFIER
Token:Code=259 Name= PLUS line= 1 col= 20 Spelling="+"
#016 addop-> +
Token:Code=272 Name= INTLIT line= 1 col= 21 Spelling="2"
#015 primary->INTLIT
#012 expression->primary addop primary
#004 IDENTIFIER := expression
#003 statement_list->statement_list ; statement
Token:Code=262 Name= SEMICOLON line= 1 col= 22 Spelling=";"
Token:Code=270 Name= WRITE line= 1 col= 24 Spelling="write"
Token:Code=263 Name= LPAREN line= 1 col= 29 Spelling="("
Token:Code=273 Name=IDENTIFIER line= 1 col= 30 Spelling="x"
#014 primary->IDENTIFIER
Token:Code=264 Name= RPAREN line= 1 col= 31 Spelling=")"
#011 expression->primary
#009 expression_list->expression
#006 WRITE (expression_list)
#003 statement_list->statement_list ; statement
Token:Code=268 Name= END line= 1 col= 33 Spelling="end"
#001 program->BEGIN statement_list END

Translator Design p02overview
CMSC 4173 File makemcr

rm mcrpar.cpp
rm mcrlex.cpp
rm *.o
rm mcr
make -f makemicro

Translator Design p02overview
CMSC 4173 File makemicro

#--
File makemcr creates a micro language compiler
#--
Author: Thomas R. Turner
E-Mail: trturner@uco.edu
Date: January, 2012
#--
Copyright January, 2012 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.
#---
#--
Object files
#--
obj = mcrpar.o \

 mcrlex.o \
 mcr.o

#--
Bind the subset Pascal Scanneer
#--
mcr: ${obj}

 g++ -o mcr ${obj} -lm -ll
#--
File mcr.cpp processes command line arguments
#--
mcr.o: mcr.cpp mcrlex.h

 g++ -c -g mcr.cpp
#--
File mcrlex.cpp is the lex-generated scanner
#--
mcrlex.cpp: mcrlex.l mcrlex.h

 lex mcrlex.l
 mv lex.yy.c mcrlex.cpp

#---
#--
mcrlex.o: mcrlex.cpp mcrlex.h

 g++ -c -g mcrlex.cpp
#--
Create files mcrpar.cpp and mcrtkn.h from file mcrpar.y
#--
mcrtkn.h \
mcrpar.cpp: mcrpar.y

 yacc -d -v mcrpar.y
 mv y.tab.c mcrpar.cpp
 mv y.tab.h mcrtkn.h

#--
Compile the parser mcrpar.y
#--
mcrpar.o: mcrpar.cpp mcrpar.h

Translator Design p02overview
CMSC 4173 File makemicro

 g++ -c -g mcrpar.cpp
#--

Translator Design p02overview
CMSC 4173 File mcr.cpp

File mcr.cpp

//---
//File mcr.cpp contains functions that process command line arguments
//and interface with the lex-generated scanner
//--
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: January, 2012
//--
//Copyright January, 2012 by Thomas R. Turner
//Do not reproduce without permission from Thomas R. Turner
//--
//C++ Standard include files
//--
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cstdio>
#include <string>
using namespace std;
//--
//Application include files
//--
#include "mcrlex.h"
#include "mcrpar.h"
//--
//Externals
//--
ofstream tfs; //trace file stream
//--
//BadSuffixException
//--
struct BadSuffixException {

BadSuffixException(char* fn)
{ cout << endl;

cout << "Input file \"" << fn << "\" does not have a .mcr suffix.";
}

};

Translator Design p02overview
CMSC 4173 File mcr.cpp

//--
//--
class FileNameSuffix {

char* prefix;
public:

FileNameSuffix(char* fn)
{ char* p=strstr(fn,".mcr");

if (!p) throw BadSuffixException(fn);
int n=p-fn;
if (n+4!=strlen(fn)) throw BadSuffixException(fn);
prefix=new char[strlen(fn)+1];
strncpy(prefix,fn,n);
prefix[n]=0;

}
~FileNameSuffix(){if (prefix) delete[] prefix;}
void Suffix(char* fn,const char* suffix)
{ strcpy(fn,prefix);

strcat(fn,suffix);
}

};
//--
//CommandLineException
//--
struct CommandLineException {

CommandLineException(int m,int a)
{ cout << endl;

cout << "Too many arguments on the command line.";
cout << endl;
cout << m << " argument(s) are permitted on the command line.";
cout << endl;
cout << a << " argument(s) appeared on the command line.";
cout << endl;

}
};
//--
//FileException
//--
struct FileException {

FileException(const char* fn)
{ cout << endl;

cout << "File " << fn << " could not be opened.";
cout << endl;

}
};

Translator Design p02overview
CMSC 4173 File mcr.cpp

//--
//--
void CompilerMgr(FILE* i)
{ Parser P(i);

P.Parse();
}

//--
//Function main processes command line arguments
//--
int main(int argc,char* argv[])
{ try {

char ifn[255];
switch (argc) {

case 1: //Prompt for the input file name
cout << "Enter the input file name. ";
cin >> ifn;
break;

case 2: //Read the input file name
strcpy(ifn,argv[1]);
break;

default:
throw CommandLineException(1,argc-1);
break;

}
FileNameSuffix F(ifn); //Find the prefix of the input file name
char tfn[255];
F.Suffix(tfn,".trc"); //Create the trace file name
FILE* i=fopen(ifn,"r"); //Open the input file
if (!i) throw FileException(ifn);
tfs.open(tfn); if (!tfs) throw FileException(tfn);
CompilerMgr(i);
tfs << endl; //Put a new line in the trace file
tfs.close(); //Close the trace file
fclose(i); //Close the input file

} catch (...) {
cout << endl;
cout << "Program terminated!";
cout << endl;
cout << "I won't be back!";
cout << endl;
exit(EXIT_FAILURE);

}
return 0;

}

Translator Design p02overview
CMSC 4173 File mcrpar.y

%{
//---
//File mcrpar.y contains the grammar for Micro, a language defined by
//Fischer and LeBlanc in their book "Crafting a Compiler" ISBN0-8053-3201-4
//---
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: January, 2012
//---
//C and C++ include files
//---
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;
//---
//Application include files
//---
#include "mcrpar.h"
//Externals
//---
extern ofstream tfs; //Trace File Stream
extern int line; //Current Line - defined in mcrlex.l
extern int col; //Current Column - define in mcrlex.l
//---
//Globals
//---
//---
//User subroutines
//---
void yyerror(const char*);
//---
%}

Translator Design p02overview
CMSC 4173 File mcrpar.y

%token TOKEN_BEGIN
/* arithmetic operators: 2*/
%token PLUS
%token MINUS

/* punctuation: 2*/
%token COMMA
%token SEMICOLON

/* parentheses & brackets: 2*/
%token LPAREN
%token RPAREN

/* assignment and range: 1*/
%token ASSIGN

/* reserve words: 4*/
%token RESERVE_WORDS
%token BEGIN_
%token END
%token READ
%token WRITE

/* regular expressions: 2*/
%token REGULAR_EXPRESSIONS
%token INTLIT
%token IDENTIFIER
%token TOKEN_END
/* total: 13*/

Translator Design p02overview
CMSC 4173 File mcrpar.y

%%
program: BEGIN_ statement_list END
 {tfs << endl << "#001 program->BEGIN statement_list END";
 }
statement_list: statement
 {tfs << endl << "#002 statement_list->statement";
 }
statement_list: statement_list SEMICOLON statement
 {tfs << endl << "#003 statement_list->statement_list ; statement";
 }
statement: IDENTIFIER ASSIGN expression
 {tfs << endl << "#004 IDENTIFIER := expression";
 }
statement: READ LPAREN identifier_list RPAREN
 {tfs << endl << "#005 READ (IDENTIFIER_list)";
 }
statement: WRITE LPAREN expression_list RPAREN
 {tfs << endl << "#006 WRITE (expression_list)";
 }
identifier_list: IDENTIFIER
 {tfs << endl << "#007 IDENTIFIER_list->IDENTIFIER";
 }
identifier_list: identifier_list COMMA IDENTIFIER
 {tfs << endl << "#008 identifier_list->identifier_list , IDENTIFIER";
 }
expression_list: expression
 {tfs << endl << "#009 expression_list->expression";
 }
expression_list: expression_list COMMA expression
 {tfs << endl << "#010 expression_list->expression_list , expression";
 }
expression: primary
 {tfs << endl << "#011 expression->primary";
 }
expression: primary addop primary
 {tfs << endl << "#012 expression->primary addop primary";
 }
primary: LPAREN expression RPAREN
 {tfs << endl << "#013 primary->(expression)";
 }
primary: IDENTIFIER
 {tfs << endl << "#014 primary->IDENTIFIER";
 }
primary: INTLIT
 {tfs << endl << "#015 primary->INTLIT";
 }
addop: PLUS
 {tfs << endl << "#016 addop-> +";

Translator Design p02overview
CMSC 4173 File mcrpar.y

 }
addop: MINUS
 {tfs << endl << "#017 addop-> -";
 }
%%
//---
//User function section
//---
struct Error {

Error(const char* m)
{ cout << endl << "line(" << line << ") col(" << col << ") " << m;

cout << endl;
}

};
//---
//Required function yyerror
//---
void yyerror(const char* m){throw Error(m);}
//---
//---
Parser::Parser(FILE* i):Lexer(i){}
int Parser::Parse(){return yyparse();}
//---
//---
Parser::~Parser(){}

Translator Design p02overview
CMSC 4173 File mcrtkn.h (y.tab.h)

/* A Bison parser, made by GNU Bison 2.4.1. */

/* Skeleton interface for Bison's Yacc-like parsers in C

 Copyright (C) 1984, 1989, 1990, 2000, 2001, 2002, 2003, 2004, 2005, 2006
 Free Software Foundation, Inc.

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>. */

/* As a special exception, you may create a larger work that contains
 part or all of the Bison parser skeleton and distribute that work
 under terms of your choice, so long as that work isn't itself a
 parser generator using the skeleton or a modified version thereof
 as a parser skeleton. Alternatively, if you modify or redistribute
 the parser skeleton itself, you may (at your option) remove this
 special exception, which will cause the skeleton and the resulting
 Bison output files to be licensed under the GNU General Public
 License without this special exception.

 This special exception was added by the Free Software Foundation in
 version 2.2 of Bison. */

/* Tokens. */
#ifndef YYTOKENTYPE
define YYTOKENTYPE
 /* Put the tokens into the symbol table, so that GDB and other debuggers
 know about them. */
 enum yytokentype {
 TOKEN_BEGIN = 258,
 PLUS = 259,
 MINUS = 260,
 COMMA = 261,
 SEMICOLON = 262,
 LPAREN = 263,
 RPAREN = 264,
 ASSIGN = 265,

Translator Design p02overview
CMSC 4173 File mcrtkn.h (y.tab.h)

 RESERVE_WORDS = 266,
 BEGIN_ = 267,
 END = 268,
 READ = 269,
 WRITE = 270,
 REGULAR_EXPRESSIONS = 271,
 INTLIT = 272,
 IDENTIFIER = 273,
 TOKEN_END = 274
 };
#endif
/* Tokens. */
#define TOKEN_BEGIN 258
#define PLUS 259
#define MINUS 260
#define COMMA 261
#define SEMICOLON 262
#define LPAREN 263
#define RPAREN 264
#define ASSIGN 265
#define RESERVE_WORDS 266
#define BEGIN_ 267
#define END 268
#define READ 269
#define WRITE 270
#define REGULAR_EXPRESSIONS 271
#define INTLIT 272
#define IDENTIFIER 273
#define TOKEN_END 274

#if ! defined YYSTYPE && ! defined YYSTYPE_IS_DECLARED
typedef int YYSTYPE;
define YYSTYPE_IS_TRIVIAL 1
define yystype YYSTYPE /* obsolescent; will be withdrawn */
define YYSTYPE_IS_DECLARED 1
#endif

extern YYSTYPE yylval;

Translator Design p02overview
CMSC 4173 File mcrlex.l

%{
//--
// File mcrlex.l defines a scanner for micro, a language defined
// in "Crafting a Compiler" by Fischer and LeBlanc.
//---
// Author: Thomas R. Turner
// E-Mail: trturner@uco.edu
// Date: January, 2012
//--
//Copyright January, 2012 by Thomas R. Turner.
//Do not reproduce without permission from Thomas R. Turner
//--
//--
// Standard C and C++ Library Include Files
//--
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <cstdio>
#include <map>
using namespace std;
//--
// Application Includes
//--
#include "mcrlex.h"
#include "mcrtkn.h"
//--
//Externals
//--
extern ofstream tfs;
//--
//Global Variables
//--
static map<string,int> RW;
static int tokencode;
static string* TokenName;
int line=1;
int col =1;
//--
//Functions
//--
void ToLower(char* o,char* i,int l); //Coerce string i to lower case
int TokenMgr(int t); //Token post processing
void PrintToken(ostream& o,int tc,int l,int c); //Print the token and attributes
//--

Translator Design p02overview
CMSC 4173 File mcrlex.l

//Exceptions
//--
struct StringTokenException{

StringTokenException(char* t,int l,int c)
{ cout << endl;

cout << "line(" << l << ") col (" << c << ")" ;
cout << "Lexical error: ";
cout << "Strings cannot span lines";
cout << endl;
cout << "|" << t << "|";
cout << endl;

}
};
struct BadCharacterException{

BadCharacterException(char p,int l,int c)
{ cout << endl;

cout << "line(" << l << ") col (" << c << ")" ;
cout << "Lexical error: ";
cout << "Illegal character |" << p << "| ASCII code=" << (int)p;
cout << endl;

}
};
%}

Translator Design p02overview
CMSC 4173 File mcrlex.l

%%
[\t]+ {col+=strlen(yytext);}
[\n] {line++;col=1;}
[a-zA-Z][a-zA-Z0-9]* return TokenMgr(IDENTIFIER);
[0-9]+ return TokenMgr(INTLIT);
"+" return TokenMgr(PLUS);
"-" return TokenMgr(MINUS);
"," return TokenMgr(COMMA);
";" return TokenMgr(SEMICOLON);
"(" return TokenMgr(LPAREN);
")" return TokenMgr(RPAREN);
":=" return TokenMgr(ASSIGN);
. { throw BadCharacterException
 (*yytext
 ,line
 ,col
);
 }

Translator Design p02overview
CMSC 4173 File mcrlex.l

%%
//--
//Class Lexer implementation
//--
//--
void ToLower(char* o,char* i,int l)
{ for (int a=0;a<l&&a<1024;a++) o[a]=tolower(i[a]); //To lower case

o[l]=0; //Null termination
}
//--
//Function TokenMgr processes the token after it has been recognized
//--
int TokenMgr(int t)
{ int tc=t;

if (t==IDENTIFIER) {
char s[1024];
ToLower(s,yytext,strlen(yytext));
tc=RW[s];
if (tc==0) tc=t;

}
PrintToken(tfs,tc,line,col);
col+=yyleng;
return tc;

}

Translator Design p02overview
CMSC 4173 File mcrlex.l

//--
//Constructor Lexer is used to redirect the input file stream from the
//keyboard to input file stream i.
//--
Lexer::Lexer(FILE* i)
{ yyin=i;

const int MAXSY=17;
static string sy[]=

{"TOKEN_BEGIN" ,"PLUS" ,"MINUS" ,"COMMA"
,"SEMICOLON" ,"LPAREN" ,"RPAREN" ,"ASSIGN"
,"RESERVE_WORDS" ,"BEGIN" ,"END" ,"READ"
,"WRITE" ,"REGULAR_EXPRESSIONS" ,"INTLIT" ,"IDENTIFIER"
, "TOKEN_END"

};
TokenName=new string[MAXSY];
for (int a=0;a<MAXSY;a++) TokenName[a]=sy[a];
static string rw[]=

{"begin" ,"end" ,"read" ,"write"
};

static int tc[]=
{BEGIN_ ,END ,READ ,WRITE
};

for (int a=0;a<4;a++) RW[rw[a]]=tc[a];
}
//--
//Function Lex calls yylex
//--
int Lexer::Lex(void)
{ tokencode=yylex();

return tokencode;
}
//--
//Function PrintToken prints the token code name and the spelling of the
//token.
//--
void PrintToken(ostream& o,int tc,int l,int c)
{ o << endl;

o << "Token";
o << ":Code=" << setw(3) << tc;
o << " Name=" << setw(10) << TokenName[tc-TOKEN_BEGIN];
o << " line=" << setw(3) << l;
o << " col=" << setw(3) << c;
o << " Spelling=\"" << (char*)yytext << "\"";

}

//-----------------------End of Lex Definition------------------------

Translator Design p02overview
CMSC 4173 File mcrlex.h

#ifndef mcrlex_h
#define mcrlex_h 1
//--
// File mcrlex.h defines class Lexer.
//--
// Author: Thomas R. Turner
// E-Mail: trturner.uco.edu
// Date: January, 2012
//--
// Copyright January, 2012 by Thomas R. Turner
// Do not reproduce without permission from Thomas R. Turner.
//--
//--
// Standard C and C++ include files
//--
#include <cstdio>
#include <fstream>
#include <iostream>
//--
//Namespaces
//--
using namespace std;
//--
//Function: yylex
//Function yylex is the mcrner. Function yylex returns an integer
//token code as defined above or 0 if end-of-file has been
//reached.
//--
#ifdef __cplusplus
extern "C"
#endif
int yylex (void);
//--
//Class Lexer defines the attributes of a Scanner
//--
class Lexer {
public:

Lexer(FILE* i); //Constructor used to redirect the keyboard (stdin) to file i.
int Lex(void); //Call the scanner yylex and return the code

};
#endif

	id := expression ;
	read (id-list) ;
	write (expression-list) ;
	id
	id-list , id
	expression
	expression-list , expression
	primary
	expression additive-operator primary
	(expression)
	id
	intlit
	+
	-
	Table 1. Set of productions for the micro grammar of Example 2.

