
Programming Languages Project p01 Overview
CMSC 4023

 1

Project p01 is a Subset Pascal Scanner. Specifications for the scanner are on the class web page
http://cs2.uco.edu/~trt/cs4023/p01.pdf. Directions for submission
(http://cs2.uco.edu/~trt/cs4023/ProjectSubmission.pdf) and a project submission template are
also on the class web page.

In this lecture, we have an example of a simple scanner for a language that is note quite trivial.
We hope that you will be able to use this example as a basis for creating the Subset Pascal Scanner.

http://cs2.uco.edu/%7Etrt/cs4023/p01.pdf
http://cs2.uco.edu/%7Etrt/cs4023/ProjectSubmission.pdf

Programming Languages Project p01 Overview
CMSC 4023

 2

ID Left-hand side Right-hand side
 program → begin statement-list end
 statement-list → statement
 statement-list → statement-list ; statement
 statement → id := expression
 statement → read (identifier-list)
 statement → write (expression-list)
 identifier-list → id
 identifier-list → identifier-list , id
 expression-list → expression
 expression-list → expression-list , expression
 expression → primary
 expression → expression add-op primary
 primary → (expression)
 primary → id
 primary → intlit
 add-op → +
 add-op → -

Token Specification Token Specification
ID (letter | _)(letter | digit | _)* ASSIGN :=
BEGAN begin COMMA ,
END end SEMICOLON ;
READ read LPAREN (
WRITE write RPAREN)
INTLIT digit+ PLUS +
 MINUS -

Programming Languages Project p01 Overview
CMSC 4023

 3

File mkmcr

rm mcrlex.cpp
make -f makemcr

File rmmcr

rm mcrlex.cpp
rm *.o
rm mcr

File makemcr

#--
File makemcr creates the micro scanner mcr
#--
Author: Thomas R. Turner
E-Mail: trturner@uco.edu
Date: March, 2003
#--
Copyright March, 2003 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.
#--
Object files
#--
obj = mcr.o \

mcrlex.o
#--
Bind the micro scanner using the linkage editor
#--
mcr: ${obj}

g++ -o mcr ${obj} -lm -ll
#--
File mcr.cpp processes command line arguments
#--
mcr.o: mcr.cpp mcrlex.h

g++ -c -g mcr.cpp
#--
File mcrlex.cpp is the lex-generated scanner
#--
mcrlex.cpp: mcrlex.l mcrlex.h

lex mcrlex.l
mv lex.yy.c mcrlex.cpp

#---
#--

Programming Languages Project p01 Overview
CMSC 4023

 4

File mcr.cpp
//--
//File mcr.cpp processes command line arguments and invokes lex (yylex)
//to find tokens in the input file.
//--
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: April, 2004
//--
//Revised January, 2015
//---
//C++ include files
//--
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <fstream>
#include <cstdio>
#include <string>
#include <iomanip>
using namespace std;
//--
//Application include files
//---
#include "mcrlex.h"
//---
//FileException is thrown when a file whose name is given on the command line
//cannot be opened.
//---
struct FileException {

FileException(const char* fn)
{ cout << endl;

cout << "File " << fn << " cannot be opened.";
cout << endl;

}
};
//---
//---
//Commandlineerror is thrown when too many arguments are put on the
//command line
//---
struct CommandLineException {

CommandLineException(int m,int a)
{ cout << endl;

cout << "Too many file names on the command line.";
cout << endl;
cout << "A maximum of " << m << " file names can appear on the command line.";
cout << endl;

Programming Languages Project p01 Overview
CMSC 4023

 5

cout << a << " file names were entered.";
cout << endl;
cout << "p01 (<input file name> (<output file name>))";

}
};
//---
//Function Title prints a title
//---
void Title(ostream& o)
{ o << endl;

o << setw(15) << "Token Code";
o << " ";
o << setw(15) << "Token Name";
o << " ";
o << "Token Spelling";

}
//---
//Function LexMgr processes the input file, calls yylex, the scanner, and
//produces the output file.
//---
void LexMgr(FILE* i,ostream& o)
{ static const char* TokenName[]=

{"EOF" ,"BEGIN" ,"END" ,"READ" ,"WRITE"
,"INTLIT" ,"ID" ,"ASSIGN" ,"SEMICOLON","COMMA"
,"LPAREN" , "RPAREN" ,"PLUS" ,"MINUS" ,"ERROR"
};

 Lexer L(i); //Redirect yylex to read file i instead of
 //the command line
 Title(o);

for (int t=yylex();t>0;t=yylex()){
o << endl;
o << setw(15) << t;
o << " ";
o << setw(15) << TokenName[t];
o << " ";
o << L.FetchSpelling();

}
o << endl;

}

Programming Languages Project p01 Overview
CMSC 4023

 6

//---
//Function main processes command line arguments
//---
int main(int argc, char* argv[])
{ try {

char ifn[255],ofn[255];
switch (argc) {

case 1://no files on the command line
cout << "Enter the input file name. ";
cin >> ifn;
cout << "Enter the output file name. ";
cin >> ofn;

break;
case 2://input file on the command line/prompt for output file

strcpy(ifn,argv[1]);
cout << "Enter the output file name. ";
cin >> ofn;

break;
case 3://Both files on the input line

strcpy(ifn,argv[1]);
strcpy(ofn,argv[2]);

break;
default:

throw CommandLineException(2,argc-1);
break;

}
FILE* i=fopen(ifn,"r"); if (!i) throw FileException(ifn);
ofstream o(ofn); if (!o) throw FileException(ofn);
LexMgr(i,o);
fclose(i);
o.close();

} catch (...) {
cout << endl;
cout << "Program Terminated!";
cout << endl;
cout << "I won't be back!";
cout << endl;
exit(EXIT_FAILURE);

}
return 0;

}

Programming Languages Project p01 Overview
CMSC 4023

 7

File mcrlex.h

#ifndef mcrlex_h
#define mcrlex_h 1
//--
// File mcrlex.h defines class Lexer.
//--
// Author: Thomas R. Turner
// E-Mail: trturner.uco.edu
// Date: March, 2003
//--
// Revised January, 2015
//--
// Copyright March, 2003 by Thomas R. Turner
// Do not reproduce without permission from Thomas R. Turner.
//--
//--
// Standard C and C++ include files
//--
#include <cstdio>
#include <fstream>
#include <iostream>
using namespace std;
//--
//Token definitions
//--
#include "y.tab.h"
//--
//Function: yylex
//Function yylex is the mcrner. Function yylex returns an integer
//token code as defined above or 0 if end-of-file has been
//reached.
//--
#ifdef __cplusplus
extern "C"
#endif
int yylex (void);
//--
//Class Lexer defines the attributes of a Scanner
//--
class Lexer {

int tokencode; //Code for the most recent token found
public:

Lexer(FILE* i); //Constructor used to redirect the keyboard
 //(stdin) to file i.
int Lex(void); //Call the scanner yylex and return the code
 //found by yylex
int FetchTokenCode(void); //Return the code of the most recent token

Programming Languages Project p01 Overview
CMSC 4023

 8

void StoreTokenCode(int T); //Store the token code.
char* FetchSpelling(void); //Return the spelling of the most recent
 //token

};
#endif

File y.tab.h

#ifndef y_tab_h
#define y_tab_h 1
//--
//Token definitions
//--
#define BEGAN 1
#define END 2
#define READ 3
#define WRITE 4
#define INTLIT 5
#define ID 6
#define ASSIGN 7
#define SEMICOLON 8
#define COMMA 9
#define LPAREN 10
#define RPAREN 11
#define PLUS 12
#define MINUS 13
#define ERROR 14
#endif

Programming Languages Project p01 Overview
CMSC 4023

 9

File mcrlex.l

%{
//--
// File mcrlex.l defines a prototype scanner for the micro language.
// The scanner definition is a lex specification.
//---
// Author: Thomas R. Turner
// E-Mail: trturner@ucok.edu
// Date: March, 2003
//--
//Copyright March, 2003 by Thomas R. Turner.
//Do not reproduce without permission from Thomas R. Turner
//--
//--
// Standard C and C++ Library Include Files
//--
#include <string>
#include <iostream>
#include <fstream>
#include <cstdio>
//--
// Application Includes
//--
#include "mcrlex.h"
//--
//Token definitions
//--
#include "y.tab.h"
//--
//Namespaces
//--
using namespace std;
//--
//Externals
//--
//--
//Global Variables
//--
int TokenMgr(int t); //Token post processing
%}

Programming Languages Project p01 Overview
CMSC 4023

 10

%%
[\t\n]+ ;
[_a-zA-Z][_a-zA-Z0-9]* return TokenMgr(ID);
[0-9]+ return TokenMgr(INTLIT);
":=" return TokenMgr(ASSIGN);
";" return TokenMgr(SEMICOLON);
"," return TokenMgr(COMMA);
"(" return TokenMgr(LPAREN);
")" return TokenMgr(RPAREN);
"+" return TokenMgr(PLUS);
"-" return TokenMgr(MINUS);
. return TokenMgr(ERROR);
%%
//--
//Class Lexer implementation
//--
//Function TokenMgr processes the token after it has been recognized
//--
int TokenMgr(int t)
{

if (t!=ID) return t;
if ((string)yytext=="begin") return BEGAN;
if ((string)yytext=="end") return END;
if ((string)yytext=="read") return READ;
if ((string)yytext=="write") return WRITE;
return ID;

}
//--
//Constructor Lexer is used to redirect the input file stream from the
//keyboard to input file stream i.
//--
Lexer::Lexer(FILE* i)
{ yyin=i;
}
//--
//Function Lex calls yylex
//--
int Lexer::Lex(void)
{ tokencode=yylex();
 return tokencode;
}

Programming Languages Project p01 Overview
CMSC 4023

 11

//--
//Function FetchSpelling returns a pointer to the spelling of the most
//recent token.
//--
char* Lexer::FetchSpelling(void)
{
 return (char*)yytext;
}
//--
//Function FetchTokenCode returns the code of the most recent token
//--
int Lexer::FetchTokenCode(void)
{ return tokencode;
}
//--
//Function StoreTokenCode records the most recent token code
//--
void Lexer::StoreTokenCode(int T)
{ tokencode=T;
}
//-----------------------End of Lex Definition------------------------

File t00.mcr

begin read(x); x:=x+2; y:=x-3; write(x,y); end

File t00.trc

 Token Code Token Name Token Spelling
 1 BEGIN begin
 3 READ read
 10 LPAREN (
 6 ID x
 11 RPAREN)
 8 SEMICOLON ;
 6 ID x
 7 ASSIGN :=
 6 ID x
 12 PLUS +
 5 INTLIT 2
 8 SEMICOLON ;
 6 ID y
 7 ASSIGN :=
 6 ID x
 13 MINUS -
 5 INTLIT 3
 8 SEMICOLON ;
 4 WRITE write
 10 LPAREN (

Programming Languages Project p01 Overview
CMSC 4023

 12

 6 ID x
 9 COMMA ,
 6 ID y
 11 RPAREN)
 8 SEMICOLON ;
 2 END end
~

