
Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 1

Project: Employ the UNIX utility lex to write a scanner for Subset Pascal whose grammar is
given in Table 1. Tokens are defined in Table 2 and Figures 1, 2, 3, and 4. An example
program is given in Figure 5 and the corresponding output produced by the Subset
Pascal scanner is shown in Figure 6. You are not required to produce an exact
replica of the output shown in Figure 6, but you are required to print one line for
every token recognized. For each token, you must print its tokencode, its location,
the string of characters recognized, and its symbolic name.

On the last page of this document, you can find a sample score sheet used to grade
this project.

Project
Files:

Project 1 consists of source files that are identified below. You must name your
source files exactly as shown below.

Project
Location:

Project files must be stored in the root directory of your student account. Failure
to store project files in the root directory of your student account will result in a
score of zero (0) for this project.

 File Description
 p01.cpp File p01.cpp contains functions which process command line

arguments and invoke the scanner, repeatedly to find all the tokens
in the input source file.

 p01lex.h File p01lex.h defines the interface to the Subset Pascal scanner.
 p01tkn.h File p01tkn.h contains the list of preprocessor definitions that define

token codes. For example,
#define PLUS 1
#define MINUS 2
…

 p01lex.l File p01lex.l contains functions that accept the tokens of a Subset
Pascal program.

 p01make File p01make contains instructions for program p01. Instructions are
written for the UNIX utility make. File p01make creates the
executable file p01 from source files identified above.

Command
Line:

Project 1 can be invoked with zero or one program parameters. The first program
parameter is the source file to be analyzed. Sample command lines together with
corresponding actions by program p01 are shown below. Boldfaced type indicates
data entered at the keyboard by the user.
$ p01
Enter the source file name: gcd.pas

$ p01 gcd.pas

Input File
Name:

The input file name must have the suffix .pas.

Input File: The input file can contain any sequence of characters. The scanner recognizes valid
Subset Pascal Tokens and rejects invalid tokens. Sample test files are stored in the
class directory. You can obtain copies of these files by issuing the following
command when signed on to your student account on the department computer.
$ cp ~tt/cs4023/*.pas .

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 2

Output File
Name:

The output file name has the same prefix as the input file but substitutes the suffix
.trc for input file name suffix .pas. For example, if the input file name is gcd.pas,
the output file name is gcd.trc.

Output
File:

The output file should contain a list of the Subset Pascal tokens. Tokens and
associated information is presented as shown in Figure 6.

 Rule
No. LHS RHS
1 program → program-head program-declarations program-body
2 program-head program id program-parameters ;
3 program-declarations declarations subprogram-declarations
4 program-body compound-statement .
5 program-parameters ∈
6 program-parameters (program-parameter-list)
7 program-parameter-list identifier-list
8 identifier-list → id
9 identifier-list → identifier-list , id
10 declarations → ∈
11 declarations → declarations var identifier-list : type ;
12 type → standard-type
13 type → array [intlit .. intlit] of standard-type
14 standard-type → id
15 subprogram-declarations → ∈
16 subprogram-declarations → subprogram-declarations subprogram-declaration ;
17 subprogram-declaration → subprogram-head declarations compound-statement
18 subprogram-head → function id subprogram-parameters : standard-type ;
19 subprogram-head → procedure id subprogram-parameters;
20 subprogram-parameters → ∈
21 subprogram-parameters → (parameter-list)
22 parameter-list → identifier-list : type
23 parameter-list → parameter-list ; identifier-list : type
24 compound-statement → begin optional-statements end
25 optional-statements → ∈
26 optional-statements → statement-list
27 statement-list → statement
28 statement-list → statement-list ; statement
29 statement → variable := expression
30 statement → procedure-statement
31 statement → alternative-statement
32 statement → iterative-statement
33 statement → compound-statement

Table 1. Subset Pascal Grammar.

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 3

 Rule
Id LHS RHS
34 alternative-statement → if-statement
35 iterative-statement → while-statement
36 iterative-statement → repeat-statement
37 iterative-statement → for-statement
38 if-statement → if expression then statement else statement
39 while-statement → while expression do statement
40 repeat-statement → repeat statement_list until expression
41 for-statement → for variable := expression to expression do statement
42 for-statement → for variable := expression downto expression

do statement
43 variable → id
44 variable → id [expression]
45 procedure-statement → id
46 procedure-statement → id (expression-list)
47 expression-list → expression
48 expression-list → expression-list , expression
49 expression → simple-expression
50 expression → simple-expression relop simple-expression
51 relop → =
52 relop → <>
53 relop → <
54 relop → <=
55 relop → >
56 relop → >=
57 simple-expression → term
58 simple-expression → sign term
59 sign → +
60 sign → -
61 simple-expression → simple-expression addop term
62 addop → +
63 addop → -
64 addop → or
65 term → factor
66 term → term mulop factor
67 mulop → *
68 mulop → /
69 mulop → div
70 mulop → mod
71 mulop → and

Table 1. Subset Pascal Grammar (continued).

 Rule

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 4

Id LHS RHS
72 factor → id
73 factor → id [expression-list]
74 factor → id (expression-list)
75 factor → (expression)
76 factor → not factor
77 factor → intlit
78 factor → realit
79 factor → chrlit

Table 1. Subset Pascal Grammar (continued).

Comments Comments are enclosed between { and }. They may not contain a {.
Comments may appear after any token.

Blanks Blanks between tokens are optional, with the exception that reserve words
and identifiers must be surrounded by blanks, newline characters, the
beginning of the program, or punctuation.

Reserve words
and identifiers

Reserve words and identifiers are case-insensitive. For example, Subset
Pascal recognizes begin and BeGin as the same token. Capitalization of
letters in reserve words and identifiers is ignored.

Tokencodes Assign a unique positive integer to each tokencode.
Token Specification Token Specification
AND and EQU =
ARRAY array NEQ <>
BEGAN begin LES <
DIV div LEQ <=
DO do GRT >
DOWNTO downto GEQ >=
ELSE else PLUS +
END end MINUS -
FOR for STAR *
FUNCTION function SLASH /
IF if ASSIGN :=
MOD mod LPAREN (
NOT not RPAREN)
OF of LBRACKET [
OR or RBRACKET]
PROCEDURE procedure COLON :
PROGRAM program SEMICOLON ;
REPEAT repeat COMMA ,
THEN then PERIOD .
TO to RANGE ..
UNTIL until
VAR var
WHILE while

Table 2. Subset Pascal Token Definitions

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 5

underscore

underscoreletter

letter

digit

id (identifier)

Figure 1. id (identifier)

Examples
• ice_cream
• _myclass
• Principal

digit

intlit (integer literal)

Figure 2. intlit (integer literal)

Examples:
• 3
• 03
• 6272844

‘ ‘character

chrlit (character literal)

Figure 3. chrlit (character literal)

Note: A single apostrophe is represented by two apostrophes is succession.
Example character literals:

• ‘a’
• ‘;’
• ‘3’
• ‘begin’
• ‘don’’t’
• ‘’’’

digit digitdigit. E

+

-

realit (real literal)

Figure 4. realit (real literal)

Examples:
• 0.6
• 5E-8
• 49.22E+08
• 1E10

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 6

program example(input,output);
var x,y: integer;
function gcd(a,b:integer):integer;
begin{gcd}

if b=0 then gcd:=a
else gcd:=gcd(b,a mod b)

end{gcd};
begin{example}

readln(x,y);
write(gcd(x,y))

end{example}.
Figure 5. File gcd.pas

token "program" pos(1, 1) code(17) symbol:PROGRAM
token "example" pos(1, 9) code(44) symbol:ID
token "(" pos(1,16) code(35) symbol:LPAREN
token "input" pos(1,16) code(44) symbol:ID
token "," pos(1,21) code(41) symbol:COMMA
token "output" pos(1,21) code(44) symbol:ID
token ")" pos(1,27) code(36) symbol:RPAREN
token ";" pos(1,27) code(40) symbol:SEMICOLON
token "var" pos(2, 3) code(22) symbol:VAR
token "x" pos(2, 7) code(44) symbol:ID
token "," pos(2, 8) code(41) symbol:COMMA
token "y" pos(2, 8) code(44) symbol:ID
token "," pos(2, 9) code(41) symbol:COMMA
token "z" pos(2, 9) code(44) symbol:ID
token ":" pos(2,10) code(39) symbol:COLON
token "integer" pos(2,10) code(44) symbol:ID
token ";" pos(2,17) code(40) symbol:SEMICOLON
token "function" pos(3, 3) code(10) symbol:FUNCTION
token "gcd" pos(3,12) code(44) symbol:ID
token "(" pos(3,15) code(35) symbol:LPAREN
token "a" pos(3,15) code(44) symbol:ID
token "," pos(3,16) code(41) symbol:COMMA
token "b" pos(3,16) code(44) symbol:ID
token ":" pos(3,17) code(39) symbol:COLON
token "integer" pos(3,17) code(44) symbol:ID
token ")" pos(3,24) code(36) symbol:RPAREN
token ":" pos(3,24) code(39) symbol:COLON
token "integer" pos(3,24) code(44) symbol:ID
token ";" pos(3,31) code(40) symbol:SEMICOLON
token "begin" pos(4, 3) code(3) symbol:BEGIN
token "if" pos(5, 5) code(11) symbol:IF
token "b" pos(5, 8) code(44) symbol:ID
token "=" pos(5, 9) code(24) symbol:EQU
token "0" pos(5, 9) code(45) symbol:INTLIT
token "then" pos(5,10) code(19) symbol:THEN
token "gcd" pos(5,15) code(44) symbol:ID
token ":=" pos(5,18) code(34) symbol:ASSIGN

Figure 6. Subset Pascal Scanner output

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 7

token "a" pos(5,18) code(44) symbol:ID
token "else" pos(6, 5) code(7) symbol:ELSE
token "gcd" pos(6,10) code(44) symbol:ID
token ":=" pos(6,13) code(34) symbol:ASSIGN
token "gcd" pos(6,13) code(44) symbol:ID
token "(" pos(6,16) code(35) symbol:LPAREN
token "b" pos(6,16) code(44) symbol:ID
token "," pos(6,17) code(41) symbol:COMMA
token "a" pos(6,17) code(44) symbol:ID
token "mod" pos(6,19) code(12) symbol:MOD
token "b" pos(6,23) code(44) symbol:ID
token ")" pos(6,24) code(36) symbol:RPAREN
token "end" pos(7, 3) code(8) symbol:END
token ";" pos(7,11) code(40) symbol:SEMICOLON
token "begin" pos(8, 1) code(3) symbol:BEGIN
token "readln" pos(9, 3) code(44) symbol:ID
token "(" pos(9, 9) code(35) symbol:LPAREN
token "x" pos(9, 9) code(44) symbol:ID
token "," pos(9,10) code(41) symbol:COMMA
token "y" pos(9,10) code(44) symbol:ID
token ")" pos(9,11) code(36) symbol:RPAREN
token ";" pos(9,11) code(40) symbol:SEMICOLON
token "write" pos(10, 3) code(44) symbol:ID
token "(" pos(10, 8) code(35) symbol:LPAREN
token "gcd" pos(10, 8) code(44) symbol:ID
token "(" pos(10,11) code(35) symbol:LPAREN
token "x" pos(10,11) code(44) symbol:ID
token "," pos(10,12) code(41) symbol:COMMA
token "y" pos(10,12) code(44) symbol:ID
token ")" pos(10,13) code(36) symbol:RPAREN
token ")" pos(10,13) code(36) symbol:RPAREN
token "end" pos(11, 1) code(8) symbol:END
token "." pos(11,13) code(42) symbol:PERIOD

Figure 6. Subset Pascal Scanner output (continued)

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

 8

Scoring Block
Component Available Earned Explanation
Compilation A zero (0) is recorded for the entire project if the

project fails to compile without errors or warnings.
Submission
Instructions

10 10 • A zero (0) is recorded for this component if the
project is stored in a folder other than the root
directory of the project account.

• A zero (0) is recorded for this component if the
project makefile fails to function correctly.

• A zero (0) is recorded for this component if any file
name differs from specifications.

• A zero (0) is recorded if source files are not
recorded in separately titled sections of this
document.

• A zero (0) is recorded for this component if the
author identification block is copied or completed
incorrectly.

• A zero (0) is recorded for the component if the
Scoring block is copied incorrectly.

Author
Identification

5 5 A zero (0) is recorded for this component if any source
file including the makefile does not have a complete
author identification block for both team members.

Command Line 5 5 A zero (0) is recorded for this component if command
line arguments are not processed according to project
specifications.

Output file 5 5 A zero (0) is recorded for this component if the output
file is not created or not named according to project
specifications.

Execution 25 25 • Five (5) points are subtracted from this component
if comments are not properly managed.

• Up to five (5) points are subtracted from this
component if all legal forms of character literals are
not recognized and all illegal forms rejected.

• Up to five (5) points are subtracted from this
component if all legal forms of real literals are not
recognized and all illegal forms rejected.

• Up to five (5) points are subtracted from this
component if all reserve words are not recognized.

• Up to five (5) points are subtracted from this
component if all punctuation is not recognized.

Total 50 50

