Programming Languages

CMSC 4023

Project 1
Subset Pascal Scanner

Project:

Employ the UNIX utility lex to write a scanner for Subset Pascal whose grammar is
givenin Table 1. Tokens are defined in Table 2 and Figures 1, 2, 3, and 4. An example
program is given in Figure 5 and the corresponding output produced by the Subset
Pascal scanner is shown in Figure 6. You are not required to produce an exact
replica of the output shown in Figure 6, but you are required to print one line for
every token recognized. For each token, you must print its tokencode, its location,
the string of characters recognized, and its symbolic name.

On the last page of this document, you can find a sample score sheet used to grade
this project.

Project
Files:

Project 1 consists of source files that are identified below. You must name your
source files exactly as shown below.

Project
Location:

Project files must be stored in the root directory of your student account. Failure
to store project files in the root directory of your student account will result in a
score of zero (0) for this project.

File Description

p01.cpp File pOl.cpp contains functions which process command line
arguments and invoke the scanner, repeatedly to find all the tokens
in the input source file.

pOllex.h File pOllex.h defines the interface to the Subset Pascal scanner.

pO1tkn.h File p01tkn.h contains the list of preprocessor definitions that define
token codes. For example,
#define PLUS 1

#define MINUS 2

File pOllex.l contains functions that accept the tokens of a Subset
Pascal program.

pOllex.|

pO1lmake File p01make contains instructions for program p01. Instructions are
written for the UNIX utility make. File pOlmake creates the

executable file p01 from source files identified above.

Command
Line:

Project 1 can be invoked with zero or one program parameters. The first program
parameter is the source file to be analyzed. Sample command lines together with
corresponding actions by program p01 are shown below. Boldfaced type indicates
data entered at the keyboard by the user.

$ p01

Enter the source file name: gcd.pas

S p01 ged.pas

Input File
Name:

The input file name must have the suffix .pas.

Input File:

The input file can contain any sequence of characters. The scanner recognizes valid
Subset Pascal Tokens and rejects invalid tokens. Sample test files are stored in the
class directory. You can obtain copies of these files by issuing the following
command when signed on to your student account on the department computer.
S cp ~tt/cs4023/*.pas .

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

Output File | The output file name has the same prefix as the input file but substitutes the suffix
Name: .trc for input file name suffix .pas. For example, if the input file name is gcd.pas,

the output file name is ged.trc.

Output The output file should contain a list of the Subset Pascal tokens. Tokens and
File: associated information is presented as shown in Figure 6.
Rule
No. | LHS RHS
1 program — | program-head program-declarations program-body
2 program-head program id program-parameters ;
3 program-declarations declarations subprogram-declarations
4 program-body compound-statement .
5 program-parameters €
6 program-parameters (program-parameter-list)
7 program-parameter-list identifier-list
8 identifier-list — | id
9 identifier-list — | identifier-list , id
10 | declarations - | €
11 | declarations — | declarations var identifier-list : type ;
12 | type — | standard-type
13 | type — | array [intlit .. intlit] of standard-type
14 | standard-type — | id
15 | subprogram-declarations | — | e
16 | subprogram-declarations | — | subprogram-declarations subprogram-declaration ;
17 | subprogram-declaration | — | subprogram-head declarations compound-statement
18 | subprogram-head — | function id subprogram-parameters : standard-type ;
19 | subprogram-head — | procedure id subprogram-parameters;
20 | subprogram-parameters | — | €
21 | subprogram-parameters | — | (parameter-list)
22 | parameter-list — | identifier-list : type
23 | parameter-list — | parameter-list ; identifier-list : type
24 | compound-statement — | begin optional-statements end
25 | optional-statements — | €
26 | optional-statements — | statement-list
27 | statement-list —> | statement
28 | statement-list — | statement-list ; statement
29 | statement —> | variable := expression
30 | statement — | procedure-statement
31 | statement — | alternative-statement
32 | statement — | iterative-statement
33 | statement — | compound-statement

Table 1. Subset Pascal Grammar.

Programming Languages

Project 1

CMSC 4023 Subset Pascal Scanner
Rule

Id | LHS RHS

34 | alternative-statement — | if-statement

35 | iterative-statement — | while-statement

36 | iterative-statement — | repeat-statement

37 | iterative-statement — | for-statement

38 | if-statement — | if expression then statement else statement

39 | while-statement — | while expression do statement

40 | repeat-statement — | repeat statement_list until expression

41 | for-statement — | for variable := expression to expression do statement

42 | for-statement — | for variable := expression downto expression
do statement

43 | variable — |id

44 | variable — | id [expression]

45 | procedure-statement — | id

46 | procedure-statement — | id (expression-list)

47 | expression-list — | expression

48 | expression-list —> | expression-list , expression

49 | expression — | simple-expression

50 | expression — | simple-expression relop simple-expression

51 | relop - | =

52 | relop - | <>

53 | relop - | <

54 | relop — | <=

55 | relop — | >

56 | relop — | >=

57 | simple-expression — | term

58 | simple-expression — | sign term

59 | sign — |+

60 | sign - |-

61 | simple-expression — | simple-expression addop term

62 | addop — |+

63 | addop - |-

64 | addop — | or

65 | term — | factor

66 | term — | term mulop factor

67 | mulop — | *

68 | mulop — |/

69 | mulop — | div

70 | mulop — | mod

71 | mulop — | and

Table 1.

Subset Pascal Grammar (continued).

Rule

Programming Languages

Project 1

CMSC 4023 Subset Pascal Scanner

Id | LHS RHS

72 | factor — | id

73 | factor — | id [expression-list]

74 | factor — | id (expression-list)

75 | factor — | (expression’)

76 | factor — | not factor

77 | factor — | intlit

78 | factor — | realit

79 | factor — | chrlit

Table 1. Subset Pascal Grammar (continued).

Comments Comments are enclosed between { and }. They may not contain a {.
Comments may appear after any token.

Blanks Blanks between tokens are optional, with the exception that reserve words
and identifiers must be surrounded by blanks, newline characters, the
beginning of the program, or punctuation.

Reserve Reserve words and identifiers are case-insensitive. For example, Subset

and identifiers Pascal recognizes begin and BeGin as the same token. Capitalization of
letters in reserve words and identifiers is ignored.

Tokencodes Assign a unique positive integer to each tokencode.

Token Specification Token Specification

AND and EQU =

ARRAY array NEQ <>

BEGAN begin LES <

DIV div LEQ <=

DO do GRT >

DOWNTO downto GEQ >=

ELSE else PLUS +

END end MINUS -

FOR for STAR

FUNCTION function SLASH /

IF if ASSIGN =

MOD mod LPAREN (

NOT not RPAREN)

OF of LBRACKET [

OR or RBRACKET 1

PROCEDURE procedure COLON :

PROGRAM program SEMICOLON ;

REPEAT repeat COMMA ,

THEN then PERIOD

TO to RANGE

UNTIL until

VAR var

WHILE while

Table 2. Subset Pascal Token Definitions

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

id (identifier)

letter

@ underscore

Figure 1. id (identifier)

\ 4

Examples
e ice_cream
e _myclass

e Principal
intlit (integer literal)
Figure 2. intlit (integer literal)
Examples:
e 3
e 03
o 6272844

chrlit (character literal)

Figure 3. chrlit (character literal)
Note: A single apostrophe is represented by two apostrophes is succession.
Example character literals:

(3

e ‘a

° I;’

° l3’

o ‘begin’
° ldonlltl

0
[]

realit (real literal)

@O @ 0Ly

Figure 4. realit (real literal)

Examples:
e 0.6
e ©5E-8
e 49.22E+08
e 1E10

Programming Languages

CMSC 4023

Project 1

Subset Pascal Scanner

program example(input,output);
var x,y: integer;
function gcd(a,b:integer):integer;
begin{gcd}
if b=0 then gcd:=a

end{gcd};
begin{example}

readin(x,y);

write(gcd(x,y))
end{example}.

else gcd:=gcd(b,a mod b)

Figure 5. File gcd.pas

token
token
token
token
token
token
token

token *

token
token

token "
token '
token '
token "
token '

token
token
token
token
token
token

"program"
"example"
ll(ll

1] i nputn

"output”
ll)ll
“var'”
e

<.

LN

"integer"

"function"

"ng"
"(n

ngn

token ","

token

nb"

token ":"

token
token

.2

nteger"”

token ":™

token
token
token
token
token
token
token
token
token

token "

"integer"

llbeg i nll
1 1] ifll
llbll

IIOII
"then"
llngll

pos(1, 1)
pos(1, 9)
pos(1,16)
pos(1,16)
pos(1,21)
pos(1,21)
pos(1,27)
pos(1,27)
pos(2, 3)
pos(2, 7)
pos(2, 8)
pos(2, 8)
pos(2, 9)
pos(2, 9)
pos(2,10)
pos(2,10)
pos(2,17)
pos(3, 3)
pos(3,12)
pos(3,15)
pos(3,15)
pos(3,16)
pos(3,16)
pos(3,17)
pos(3,17)
pos(3,24)
pos(3,24)
pos(3,24)
pos(3,31)
pos(4, 3)
pos(5, 5)
pos(5, 8)
pos(5, 9)
pos(5, 9)
pos(5,10)
pos(5,15)
pos(5,18)

code(17)
code(44)
code(35)
code(44)
code(41)
code(44)
code(36)
code(40)
code(22)
code(44)
code(41)
code(44)
code(41)
code(44)
code(39)
code(44)
code(40)
code(10)
code(44)
code(35)
code(44)
code(41)
code(44)
code(39)
code(44)
code(36)
code(39)
code(44)
code(40)
code(3)
code(11)
code(44)
code(24)
code(45)
code(19)
code(44)
code(34)

symbol :
symbol :
:LPAREN

symbol

symbol :
symbol :
symbol :
:RPAREN

:SEMICOLON

symbol
symbol

symbol :
symbol :
- COMMA

symbol

symbol :
symbol :
symbol :
:COLON

symbol

symbol :
:SEMICOLON
FUNCTION

symbol
symbol

symbol :
symbol :
symbol :
:COMMA

symbol

symbol :
symbol :
symbol :
:RPAREN
:COLON

symbol
symbol

symbol :
:SEMICOLON
:BEGIN

symbol
symbol

symbol :
symbol :
EQU
symbol :
:THEN

symbol

symbol

symbol :
:ASSIGN

symbol

PROGRAM
ID

ID

COMMA
ID

VAR

ID

ID
COMMA
ID

ID

ID
LPAREN
ID

ID

COLON
ID

ID

IF
ID
INTLIT

ID

Figure 6. Subset Pascal Scanner output

Programming Languages
CMSC 4023

Project 1
Subset Pascal Scanner

token "a"
token "else™
token "‘gcd"
token ":=""
token "gcd™
token ("
token "b"
token ","
token "a"
token ""mod"
token "'b"
token ™)™
token "
token "
token "
token "
token "(
token "'x"
token ","
token "'y"
token ™)™
token ;"
token "'w
token ("
token "'gcd"
token ("
token "'x"
token ","
token "y"
token)"
token ™)
token "'e
token "

pos(5,18)
pos(6, 5)
pos(6,10)
pos(6,13)
pos(6,13)
pos(6,16)
pos(6,16)
pos(6,17)
pos(6,17)
pos(6,19)
pos(6,23)
pos(6,24)
pos(7, 3)
pos(7,11)
pos(8, 1)
pos(9, 3)
pos(9, 9)
pos(9, 9)
pos(9,10)
pos(9,10)
pos(9,11)
pos(9,11)
pos(10, 3)
pos(10, 8)
pos(10, 8)
pos(10,11)
pos(10,11)
pos(10,12)
pos(10,12)
pos(10,13)
pos(10,13)
pos(11, 1)
pos(11,13)

code(44)
code(7)
code(44)
code(34)
code(44)
code(35)
code(44)
code(41)
code(44)
code(12)
code(44)
code(36)
code(8)
code(40)
code(3)
code(44)
code(35)
code(44)
code(41)
code(44)
code(36)
code(40)
code(44)
code(35)
code(44)
code(35)
code(44)
code(41)
code(44)
code(36)
code(36)
code(8)
code(42)

symbol :
symbol :
symbol :
:ASSIGN

symbol

symbol :
symbol :
symbol :
:COMMA

symbol

symbol :
*MOD

symbol

symbol :
:RPAREN

symbol

symbol :
:SEMICOLON
:BEGIN

symbol
symbol

symbol :
symbol :
symbol :
:COMMA

symbol

symbol :
symbol :
:SEMICOLON

symbol

symbol :
symbol :
symbol :
:LPAREN

symbol

symbol :
:COMMA

symbol

symbol :
:RPAREN
:RPAREN

symbol
symbol

symbol :
:PERIOD

symbol

ID
ELSE
ID

ID
LPAREN
ID

ID

ID

END

ID
LPAREN
ID

ID
RPAREN

ID
LPAREN
ID
ID

ID

END

Figure 6. Subset Pascal Scanner output (continued)

Programming Languages Project 1
CMSC 4023 Subset Pascal Scanner

Scoring Block

Component Available | Earned | Explanation

Compilation A zero (0) is recorded for the entire project if the
project fails to compile without errors or warnings.

Submission 10 10 e A zero (0) is recorded for this component if the

Instructions project is stored in a folder other than the root

directory of the project account.

e A zero (0) is recorded for this component if the
project makefile fails to function correctly.

e Azero(0)is recorded for this component if any file
name differs from specifications.

e A zero (0) is recorded if source files are not
recorded in separately titled sections of this
document.

e A zero (0) is recorded for this component if the
author identification block is copied or completed
incorrectly.

e A zero (0) is recorded for the component if the
Scoring block is copied incorrectly.

Author 5 5 A zero (0) is recorded for this component if any source

Identification file including the makefile does not have a complete
author identification block for both team members.

Command Line 5 5 A zero (0) is recorded for this component if command

line arguments are not processed according to project

specifications.

Output file 5 5 A zero (0) is recorded for this component if the output

file is not created or not named according to project

specifications.

Execution 25 25 e Five (5) points are subtracted from this component
if comments are not properly managed.

e Up to five (5) points are subtracted from this
component if all legal forms of character literals are
not recognized and all illegal forms rejected.

e Up to five (5) points are subtracted from this
component if all legal forms of real literals are not
recognized and all illegal forms rejected.

e Up to five (5) points are subtracted from this
component if all reserve words are not recognized.

e Up to five (5) points are subtracted from this
component if all punctuation is not recognized.

Total 50 50

