
Programming Languages File mcrlex.l
CMSC 4023 tt/cs4023/micro

 1

%{
//--
// File mcrlex.l defines a prototype scanner for the micro language.
// The scanner definition is a lex specification.
//---
// Author: Thomas R. Turner
// E-Mail: trturner@uco.edu
// Date: September, 2018
//--
//Copyright September, 2018 by Thomas R. Turner.
//Do not reproduce without permission from Thomas R. Turner
//--
//--
// Standard C and C++ Library Include Files
//--
#include <string>
#include <iostream>
#include <fstream>
#include <cstdio>
//--
// Application Includes
//--
#include "mcrlex.h"
//--
//Token definitions
//--
//--
//Namespaces
//--
using namespace std;
//--
//Externals
//--
//--
//Global Variables
//--
int TokenMgr(int t); //Token post processing
%}

Programming Languages File mcrlex.l
CMSC 4023 tt/cs4023/micro

 2

%%
[\t\n]+ ;
[a-z]+ return TokenMgr(ID);
[0-9]+ return TokenMgr(INTLIT);
"," return TokenMgr(COMMA);
";" return TokenMgr(SEMICOLON);
":=" return TokenMgr(ASSIGN);
"+" return TokenMgr(PLUS);
"-" return TokenMgr(MINUS);
"/" return TokenMgr(SLASH);
"*" return TokenMgr(STAR);
"(" return TokenMgr(LPAREN);
")" return TokenMgr(RPAREN);
. return TokenMgr(ERROR);
%%
//--
//Class Lexer implementation
//--
//Function TokenMgr processes the token after it has been recognized
//--
int TokenMgr(int t)
{

if (t!=ID) return t;
if ((string)yytext=="read") return READ;
if ((string)yytext=="write") return WRITE;
if ((string)yytext=="begin") return BEGAN;
if ((string)yytext=="end") return END;
return t;

}
//--
//Constructor Lexer is used to redirect the input file stream from the
//keyboard to input file stream i.
//--
Lexer::Lexer(FILE* i){yyin=i;}
//--
//Function Lex calls yylex
//--
int Lexer::Lex(void)
{tokencode=yylex();

return tokencode;
}

Programming Languages File mcrlex.l
CMSC 4023 tt/cs4023/micro

 3

//--
//Function FetchSpelling returns a pointer to the spelling of the most
//recent token.
//--
char* Lexer::FetchSpelling(void){return (char*)yytext;}
//--
//Function FetchTokenCode returns the code of the most recent token
//--
int Lexer::FetchTokenCode(void){return tokencode;}
//--
//Function StoreTokenCode records the most recent token code
//--
void Lexer::StoreTokenCode(int T){tokencode=T;}
//-----------------------End of Lex Definition------------------------

