Programming Languages
CMSC 4023

Statement-Level Control Structures
e selection statements

o if
0 case

e jterative
0 while
O repeat—until
o for

e unconditional branching
O goto

e guarded command control structures
0 Dijkstra

8.1. Introduction

e while and if are sufficient — B6hm and Jacopini 1966

8.2. Selection Statements

Statement-Level Control Structures
Chapter 8

e Aselection statement provides the means of choosing between two or more execution paths

in a program.

8.2.1. Two-Way Selection Statements

e One-armed if

if control-expression then-clause

control-expression

e Two-armed if

if control-expression then-clause else-clause

then-clause

A

else-clause

control-expression

then-clause

A4
A

Programming Languages

CMSC 4023

Statement-Level Control Structures
Chapter 8

8.2.1.1. Design Issues

What are the form and type of the expression that controls the selection?

How are the then and else clauses specified?

How should the meaning of nested selectors be specified?

8.2.1.2. The Control Expression

Syntactic markers are required to distinguish the control-expression. One of two
alternatives are generally chosen as exemplified by Pascal and C++.

(0}

Pascal
if control-expression then then-clause
if i<0 then i:=-i; {one-armed if}
if control-expression then then-clause else else-clause
if (p>0) and (p>q) {two-armed if}
then begin p:=p-g; g:=p+q end
else begin p:=p+q; g:=p-q end;

C++
if (control-expression) then-clause
if (i<0) i=-i; //one-armed if
if (control-expression) then-clause else else-clause
if (0>0 && p>q) { //two-armed if
b=p-q; q=p+q;
}else {
pb=p+q; g=p-q;
}
Ada
if i<0 then i:=-i; end if; --one-armed if
if p>0 and p>q --two-armed if

then p:=p-g; q:=p+q;
else begin p:=p+q; q:=p-g;
end if;

Ruby
if sum==0 then
if count==0 then
result=0
else
result=1
end
end

8.2.1.3. Clause Form

Issue: single or compound statement

Perl —all then and else clauses must be compound statements

C-Based languages, JavaScript, Perl enclose compound statements in curly braces.
Fortran 95, Ada, Python, and Ruby — then and else clauses are statement
sequences. The complete selection construct is terminated with a reserve word.

Programming Languages Statement-Level Control Structures

CMSC 4023 Chapter 8
e Python uses indentation to specify compound statements, For example,
if x>y :
x=y

print “case 1”
8.2.1.4. Nesting Selectors
e Issue: which if-statement does an else-clause belong to when it is nested?

if (sum==0)
if (count==0)
result=0;
else //Does this else belong to if (sum==0)

result=1; [/Or does this else belong to if (count==0)
e Normally, the static semantics of the language specify that the else-clause is
always paired with the nearest previous unpaired then-clause.
e Compound-statements can force the issue
if (sum==0) {
if (count==0)result=0;
} else result=1;
8.2.2. Multiple-Selection Statements
e The multiple-selection construct allows the selection of one of any number of
statements or statement groups.

8.2.2.1. Design Issues
e What is the form and type of the expression that controls the selection?
e How are the selectable segments specified?
e |s execution flow though the structure restricted to include just a single selectable
segment?
e How are the case values specified?
e How should unrepresented selector expression values be handled, if at all?

8.2.2.2. Examples of Multiple Selectors
e (C,C++, Java
switch (index) {

case 1:

case 3: odd+=1;
sumodd+=index;
break;

case 2:

case 4: even+=1;
sumeven+=index;
break;

default:cout << “Error in switch, index = “ << jndex; break;

Notes:
1. Without the break-statement control continues to the next alternative.

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

o CH
switch (value) {

case -1:
Negatives++;
break;

case 0:
Zeros++;
goto case 1;

case 1:
Positives++;
break;

default:
Console.WriteLine(“Error in switch \n”);
break;

Notes:

1. Every selectable segment must end with an explicit unconditional branch
statement: either a break, which transfers control out of the switch
construct, or a goto, which can transfer control to one of the selectable
segments (or virtually anywhere else).

e Pascal
type direction=(North,East,South,West);
var x:direction;

case x of
North: x:=East;
East: x:=South;
South: x:=West;
West: x:=North

end;
e Ada
case x of
when North => x:=East;
when East => x:=South;
when South => x:=West;
when West => x:=North;
end;
e Ruby
case

when Boolean-expression then expression

when Boolean-expression then expression
[else expression]
end

Programming Languages Statement-Level Control Structures

CMSC 4023

Chapter 8

8.2.2.3. Implementing Multiple Selection Structures

A multiple selection construct is essentially an n-way branch to segments of code,
where n is the number of selectable segments.

Implementing such a construct must be done with multiple conditional branch
instructions.

//The following code fragment in C++ is implemented below
switch (expression) {
case constant-expression-1: statement-1;
break;

case constant-expression-n: statement-n;
break;
[default: statement-n+1]
}
//The foregoing code fragment in C++ is implemented below
t=expression;
goto branches
label-1: code for statement-1
goto out;

label-n: code for statement-n
goto out;

default: code for statement-n+1
goto out;

branches: if t==constant-expression-1 goto label-1
if t==constant-expressionn-n goto label-n

goto default
out:

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

8.2.2.4. Multiple Selection Using if

e Python
if count <10 :
bag1=True
elif count < 100 :
bag2=True
elif count <1000 :
bag3=True
else
bag4=True

Implemented as

if count <10 :
bagl=True
else:
if count <100 :
bag2=True
else:
if count<1000 :
bag3=True
else:
bag4=True

8.3. Iterative Statements

¢ The repeated execution of a statement or compound statement is accomplished either by
iteration or recursion
¢ General design issues for iteration control statements:
O How is iteration controlled?
0 Where is the control mechanism in the loop?
0 Entrances and exits

8.3.1. Counter-Controlled Loops

e A counting iterative statement has a loop variable, and a means of specifying the
initial and terminal, and stepsize values

8.3.1.1. Design Issues

0 What are the type and scope of the loop variable?

0 Should it be legal for the loop variable or loop parameters to be changed in the loop body,
and if so, does the change affect loop control?

0 Should the loop parameters be evaluated only once, or once for every iteration?

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

8.3.1.2. The Do Statements of Fortran 95

* FORTRAN 95 syntax
DO label var = start, finish [, stepsize]
e Stepsize can be any value but zero
e Parameters can be expressions
e Design choices:
O Loop variable must be INTEGER
0 The loop variable cannot be changed in the loop, but the parameters can;
because they are evaluated only once, it does not affect loop control
0 Loop parameters are evaluated only once
O FORTRAN 95 : a second form:
[name:] Do variable = initial, terminal [,stepsize]

End Do [name]
- Cannot branch into either of Fortran’s Do statements

8.3.1.3. The Ada For Statement

e Ada
for var in [reverse] discrete_range loop
end loop
* Design choices:
- Type of the loop variable is that of the discrete range (A discrete range is a sub-
range of an integer or enumeration type).
- Loop variable does not exist outside the loop
- The loop variable cannot be changed in the loop, but the discrete range can; it
does not affect loop control
- The discrete range is evaluated just once
e Cannot branch into the loop body

8.3.1.4. The For Statement of the C-Based Language

e C-based languages
for ([expr_1]; [expr_2] ; [expr_3]) statement
— The expressions can be whole statements, or even statement sequences,
with the statements separated by commas
— The value of a multiple-statement expression is the value of the last
statement in the expression
— If the second expression is absent, it is an infinite loop
e Design choices:
— There is no explicit loop variable
— Everything can be changed in the loop

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

— The first expression is evaluated once, but the other two are evaluated with

each iteration

e C++ differs from Cin two ways:
1. The control expression can also be Boolean
2. The initial expression can include variable definitions (scope is from the

definition to the end of the loop body)

* Javaand C#

1. Differs from C++ in that the control expression must be Boolean

8.3.1.5. The For Statement of Python

e Python
for loop_variable in object:
- loop body
[else:
- else clause]
— The object is often a range, which is either a list of values in brackets ([2,
4, 6]), or a call to the range function (range(5), which returns 0, 1, 2, 3, 4
— The loop variable takes on the values specified in the given range, one
for each iteration
— The else clause, which is optional, is executed if the loop terminates
normally

8.3.2. Logically Controlled Loops

e Repetition control is based on a Boolean expression

8.3.2.1. Design Issues

* Pretest or posttest?
e Should the logically controlled loop be a special case of the counting loop statement
or a separate statement?

8.3.2.2. Example

e Cand C++ have both pretest and posttest forms, in which the control expression
can be arithmetic:
while (ctrl_expr) do
loop body loop body
while (ctrl_expr)
e Java is like C and C++, except the control expression must be Boolean (and the
body can only be entered at the beginning -- Java has no goto
* Ada has a pretest version, but no posttest
* FORTRAN 95 has neither

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

e Perl and Ruby have two pretest logical loops, while and until. Perl also has two
posttest loops

8.3.3. User-Located Loop Control Mechanisms

e Sometimes it is convenient for the programmers to decide a location for loop control
(other than top or bottom of the loop)
¢ Simple design for single loops (e.g., break)
e Design issues for nested loops
1. Should the conditional be part of the exit?
2. Should control be transferable out of more than one loop?
e C, C++, Python, Ruby, and C# have unconditional unlabeled exits (break)
e Java and Perl have unconditional labeled exits (break in Java, last in Perl)
e C, C++, and Python have an unlabeled control statement, continue, that skips the
remainder of the current iteration, but does not exit the loop
* Java and Perl have labeled versions of continue

8.3.4. Iteration Based on Data Structures

¢ Number of elements of in a data structure control loop iteration
e Control mechanism is a call to an jterator function that returns the next element in
some chosen order, if there is one; else loop is terminate
e ('s for can be used to build a user-defined iterator:
for (p=root; p==NULL; traverse(p))}{
}
PHP
- current points at one element of the array
- next moves current to the next element
- reset moves current to the first element
e Java
- For any collection that implements the Iterator interface
- next moves the pointer into the collection
- hasNext is a predicate
- remove deletes an element
e Perl has a built-in iterator for arrays and hashes, foreach
e Java 5.0 (uses for, although it is called foreach)
- For arrays and any other class that implements
Iterable interface, e.g., ArrayList
for (String myElement : myList) { ... }
e (C#'s foreach statement iterates on the elements of arrays and
other collections:
Strings([] = strList = {"Bob", "Carol", "Ted"};
foreach (Strings name in strlList)
Console.WriteLine ("Name: {0}", name);
- The notation {0} indicates the position in the string to be displayed
e Lua

Programming Languages Statement-Level Control Structures

CMSC 4023

Chapter 8

— Lua has two forms of its iterative statement, one like Fortran’s Do, and a more
general form:
for variable_1 [, variable_2] in iterator(table) do
end
— The most commonly used iterators are pairs
and ipairs

8.4. Unconditional Branching

Transfers execution control to a specified place in the program
Represented one of the most heated debates in 1960’s and 1970's
Major concern: Readability

Some languages do not support goto statement (e.g., Java)

C# offers goto statement (can be used in switch statements)

Loop exit statements are restricted and somewhat camouflaged goto’s

8.5. Guarded Commands

Designed by Dijkstra

Purpose: to support a new programming methodology that supported verification
(correctness) during development

Basis for two linguistic mechanisms for concurrent programming (in CSP and Ada)

Basic Idea: if the order of evaluation is not important, the program should not specify one
Form

if <Boolean exp> -> <statement>

[] <Boolean exp> -> <statement>

[] <Boolean exp> -> <statement>
fi
Semantics: when construct is reached,
— Evaluate all Boolean expressions
— If more than one are true, choose one non-deterministically
— If none are true, it is a runtime error
Connection between control statements and program verification is intimate
Verification is impossible with goto statements
Verification is possible with only selection and logical pretest loops
Verification is relatively simple with only guarded commands

8.6. Conclusions

Variety of statement-level structures

Choice of control statements beyond selection and logical pretest loops is a trade-off
between language size and writability

Functional and logic programming languages are quite different control structures

10

