
Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

1

Statement-Level Control Structures
• selection statements

o if
o case

• iterative
o while
o repeat – until
o for

• unconditional branching
o goto

• guarded command control structures
o Dijkstra

8.1. Introduction
• while and if are sufficient – Böhm and Jacopini 1966

8.2. Selection Statements
• A selection statement provides the means of choosing between two or more execution paths

in a program.
8.2.1. Two-Way Selection Statements

• One-armed if
if control-expression then-clause

control-expression
true

then-clause

• Two-armed if

if control-expression then-clause else-clause

control-expression
truefalse

else-clause then-clause

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

2

8.2.1.1. Design Issues
• What are the form and type of the expression that controls the selection?
• How are the then and else clauses specified?
• How should the meaning of nested selectors be specified?

8.2.1.2. The Control Expression
• Syntactic markers are required to distinguish the control-expression. One of two

alternatives are generally chosen as exemplified by Pascal and C++.
o Pascal

if control-expression then then-clause
if i<0 then i:=-i; {one-armed if}
if control-expression then then-clause else else-clause
if (p>0) and (p>q) {two-armed if}

then begin p:=p-q; q:=p+q end
else begin p:=p+q; q:=p-q end;

o C++
if (control-expression) then-clause
if (i<0) i=-i; //one-armed if
if (control-expression) then-clause else else-clause
if (p>0 && p>q) { //two-armed if

p=p-q; q=p+q;
} else {

p=p+q; q=p-q;
}

o Ada
if i<0 then i:=-i; end if; --one-armed if
if p>0 and p>q --two-armed if

then p:=p-q; q:=p+q;
else begin p:=p+q; q:=p-q;

end if;

o Ruby
if sum==0 then

if count==0 then
result=0

else
result=1

end
end

8.2.1.3. Clause Form
• Issue: single or compound statement
• Perl – all then and else clauses must be compound statements
• C-Based languages, JavaScript, Perl enclose compound statements in curly braces.
• Fortran 95, Ada, Python, and Ruby – then and else clauses are statement

sequences. The complete selection construct is terminated with a reserve word.

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

3

• Python uses indentation to specify compound statements, For example,
if x>y :

x = y
print “case 1”

8.2.1.4. Nesting Selectors
• Issue: which if-statement does an else-clause belong to when it is nested?

if (sum==0)
if (count==0)

result=0;
else //Does this else belong to if (sum==0)

result=1; //Or does this else belong to if (count==0)
• Normally, the static semantics of the language specify that the else-clause is

always paired with the nearest previous unpaired then-clause.
• Compound-statements can force the issue

if (sum==0) {
if (count==0)result=0;

} else result=1;
8.2.2. Multiple-Selection Statements

• The multiple-selection construct allows the selection of one of any number of
statements or statement groups.

8.2.2.1. Design Issues

• What is the form and type of the expression that controls the selection?
• How are the selectable segments specified?
• Is execution flow though the structure restricted to include just a single selectable

segment?
• How are the case values specified?
• How should unrepresented selector expression values be handled, if at all?

8.2.2.2. Examples of Multiple Selectors

• C, C++, Java
switch (index) {

case 1:
case 3: odd+=1;

sumodd+=index;
break;

case 2:
case 4: even+=1;

sumeven+=index;
break;

default: cout << “Error in switch, index = “ << index; break;
}

Notes:
1. Without the break-statement control continues to the next alternative.

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

4

• C#
switch (value) {

case -1:
Negatives++;
break;

case 0:
Zeros++;
goto case 1;

case 1:
Positives++;
break;

default:
Console.WriteLine(“Error in switch \n”);
break;

}

Notes:
1. Every selectable segment must end with an explicit unconditional branch

statement: either a break, which transfers control out of the switch
construct, or a goto, which can transfer control to one of the selectable
segments (or virtually anywhere else).

• Pascal

type direction=(North,East,South,West);
var x:direction;
…
case x of

North: x:=East;
East: x:=South;
South: x:=West;
West: x:=North

end;

• Ada
case x of

when North => x:=East;
when East => x:=South;
when South => x:=West;
when West => x:=North;

end;

• Ruby
case
when Boolean-expression then expression
…
when Boolean-expression then expression
[else expression]
end

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

5

8.2.2.3. Implementing Multiple Selection Structures

• A multiple selection construct is essentially an 𝑛𝑛-way branch to segments of code,
where 𝑛𝑛 is the number of selectable segments.

• Implementing such a construct must be done with multiple conditional branch
instructions.

//The following code fragment in C++ is implemented below
switch (expression) {

case constant-expression-1: statement-1;
break;

…
case constant-expression-n: statement-n;

break;
[default: statement-n+1]

}
//The foregoing code fragment in C++ is implemented below
t=expression;
goto branches
label-1: code for statement-1
 goto out;
…
label-n: code for statement-n
 goto out;
default: code for statement-n+1

goto out;

branches: if t==constant-expression-1 goto label-1
…
if t==constant-expressionn-n goto label-n
goto default

out:

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

6

8.2.2.4. Multiple Selection Using if

• Python
if count < 10 :

bag1=True
elif count < 100 :

bag2=True
elif count < 1000 :

bag3=True
else

bag4=True

Implemented as

if count < 10 :

bag1=True
else :

if count < 100 :
bag2=True

else :
if count<1000 :

bag3=True
else :

bag4=True

8.3. Iterative Statements

• The repeated execution of a statement or compound statement is accomplished either by
iteration or recursion

• General design issues for iteration control statements:
o How is iteration controlled?
o Where is the control mechanism in the loop?
o Entrances and exits

8.3.1. Counter-Controlled Loops

• A counting iterative statement has a loop variable, and a means of specifying the

initial and terminal, and stepsize values

8.3.1.1. Design Issues

o What are the type and scope of the loop variable?
o Should it be legal for the loop variable or loop parameters to be changed in the loop body,

and if so, does the change affect loop control?
o Should the loop parameters be evaluated only once, or once for every iteration?

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

7

8.3.1.2. The Do Statements of Fortran 95

• FORTRAN 95 syntax
 DO label var = start, finish [, stepsize]

• Stepsize can be any value but zero
• Parameters can be expressions
• Design choices:

o Loop variable must be INTEGER
o The loop variable cannot be changed in the loop, but the parameters can;

because they are evaluated only once, it does not affect loop control
o Loop parameters are evaluated only once
o FORTRAN 95 : a second form:

 [name:] Do variable = initial, terminal [,stepsize]
 …
 End Do [name]
 - Cannot branch into either of Fortran’s Do statements

8.3.1.3. The Ada For Statement

• Ada
 for var in [reverse] discrete_range loop ...
 end loop

• Design choices:
 - Type of the loop variable is that of the discrete range (A discrete range is a sub-

range of an integer or enumeration type).
 - Loop variable does not exist outside the loop
 - The loop variable cannot be changed in the loop, but the discrete range can; it

does not affect loop control
 - The discrete range is evaluated just once

• Cannot branch into the loop body

8.3.1.4. The For Statement of the C-Based Language

• C-based languages
for ([expr_1] ; [expr_2] ; [expr_3]) statement
– The expressions can be whole statements, or even statement sequences,

with the statements separated by commas
– The value of a multiple-statement expression is the value of the last

statement in the expression
– If the second expression is absent, it is an infinite loop

• Design choices:
– There is no explicit loop variable
– Everything can be changed in the loop

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

8

– The first expression is evaluated once, but the other two are evaluated with
each iteration

• C++ differs from C in two ways:
1. The control expression can also be Boolean
2. The initial expression can include variable definitions (scope is from the

definition to the end of the loop body)
• Java and C#

1. Differs from C++ in that the control expression must be Boolean

8.3.1.5. The For Statement of Python

• Python
 for loop_variable in object:
 - loop body
 [else:
 - else clause]
– The object is often a range, which is either a list of values in brackets ([2,

4, 6]), or a call to the range function (range(5), which returns 0, 1, 2, 3, 4
– The loop variable takes on the values specified in the given range, one

for each iteration
– The else clause, which is optional, is executed if the loop terminates

normally

8.3.2. Logically Controlled Loops

• Repetition control is based on a Boolean expression

8.3.2.1. Design Issues

• Pretest or posttest?
• Should the logically controlled loop be a special case of the counting loop statement

or a separate statement?

8.3.2.2. Example

• C and C++ have both pretest and posttest forms, in which the control expression
can be arithmetic:

 while (ctrl_expr) do
 loop body loop body
 while (ctrl_expr)
• Java is like C and C++, except the control expression must be Boolean (and the

body can only be entered at the beginning -- Java has no goto
• Ada has a pretest version, but no posttest
• FORTRAN 95 has neither

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

9

• Perl and Ruby have two pretest logical loops, while and until. Perl also has two
posttest loops

8.3.3. User-Located Loop Control Mechanisms

• Sometimes it is convenient for the programmers to decide a location for loop control
(other than top or bottom of the loop)

• Simple design for single loops (e.g., break)
• Design issues for nested loops

1. Should the conditional be part of the exit?
2. Should control be transferable out of more than one loop?

• C , C++, Python, Ruby, and C# have unconditional unlabeled exits (break)
• Java and Perl have unconditional labeled exits (break in Java, last in Perl)
• C, C++, and Python have an unlabeled control statement, continue, that skips the

remainder of the current iteration, but does not exit the loop
• Java and Perl have labeled versions of continue

8.3.4. Iteration Based on Data Structures

• Number of elements of in a data structure control loop iteration
• Control mechanism is a call to an iterator function that returns the next element in

some chosen order, if there is one; else loop is terminate
• C's for can be used to build a user-defined iterator:

 for (p=root; p==NULL; traverse(p)){
 }

PHP
 - current points at one element of the array
 - next moves current to the next element
 - reset moves current to the first element

• Java
 - For any collection that implements the Iterator interface
 - next moves the pointer into the collection
 - hasNext is a predicate
 - remove deletes an element

• Perl has a built-in iterator for arrays and hashes, foreach
• Java 5.0 (uses for, although it is called foreach)

 - For arrays and any other class that implements
 Iterable interface, e.g., ArrayList
 for (String myElement : myList) { … }

• C#’s foreach statement iterates on the elements of arrays and
 other collections:
 Strings[] = strList = {"Bob", "Carol", "Ted"};
 foreach (Strings name in strList)
 Console.WriteLine ("Name: {0}", name);
 - The notation {0} indicates the position in the string to be displayed

• Lua

Programming Languages Statement-Level Control Structures
CMSC 4023 Chapter 8

10

– Lua has two forms of its iterative statement, one like Fortran’s Do, and a more
general form:
 for variable_1 [, variable_2] in iterator(table) do
 …
 end

– The most commonly used iterators are pairs
 and ipairs

8.4. Unconditional Branching

• Transfers execution control to a specified place in the program
• Represented one of the most heated debates in 1960’s and 1970’s
• Major concern: Readability
• Some languages do not support goto statement (e.g., Java)
• C# offers goto statement (can be used in switch statements)
• Loop exit statements are restricted and somewhat camouflaged goto’s

8.5. Guarded Commands

• Designed by Dijkstra
• Purpose: to support a new programming methodology that supported verification

(correctness) during development
• Basis for two linguistic mechanisms for concurrent programming (in CSP and Ada)
• Basic Idea: if the order of evaluation is not important, the program should not specify one
• Form

if <Boolean exp> -> <statement>
[] <Boolean exp> -> <statement>
 ...
[] <Boolean exp> -> <statement>
fi

• Semantics: when construct is reached,
– Evaluate all Boolean expressions
– If more than one are true, choose one non-deterministically
– If none are true, it is a runtime error

• Connection between control statements and program verification is intimate
• Verification is impossible with goto statements
• Verification is possible with only selection and logical pretest loops
• Verification is relatively simple with only guarded commands

8.6. Conclusions

• Variety of statement-level structures
• Choice of control statements beyond selection and logical pretest loops is a trade-off

between language size and writability
• Functional and logic programming languages are quite different control structures

