
Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

1

7. Expressions and Assignment Statements
7.1. Introduction

• operator precedence
• operator associativity
• order of operator and operand evaluation
• type mismatch
• type coercion
• short-circuit evaluation
• imperative languages are dominated by assignment statements

7.2. Arithmetic Expressions
• unary, binary, and ternary operators meaning an operator can have one, two, or three

operands respectively
• Design issues include

o What are the operator precedence rules?
o What are the operator associativity rules?
o What is the order of operand evaluation?
o Are there restrictions on operand evaluation side effects?
o Does the language allow user-defined operator overloading?
o What type mixing is allowed in expressions?

7.2.1. Operator Evaluation Order
7.2.1.1. Precedence

• Operators are executed in the order of their precedence. Operators having
higher precedence are executed before operators having lower precedence. For
example, consider:

𝑎𝑎 + 𝑏𝑏 ∗ 𝑐𝑐
Both the addition operator + and the multiplication operator ∗ are binary
operators. The addition operator wants to bind to the two nearest operands 𝑎𝑎
and 𝑏𝑏. The multiplication operator likewise wants to bind to the two nearest
operands 𝑏𝑏 and 𝑐𝑐. Operand 𝑏𝑏 is in contention. The question is: which operator
binds to operand 𝑏𝑏 since 𝑏𝑏 can only be bound to one operator. Precedence
determines the selection of operands. The operator with the highest precedence
binds the operand in contention. The multiplication operator has the highest
precedence and it executes first finding the product 𝑏𝑏 ∗ 𝑐𝑐. The value of operand
𝑎𝑎 is added to the product.

 Ruby C-Based Languages Ada
Higher ** postfix ++,-- **, abs
 unary +,- prefix ++,--, unary+,- *,/,mod,rem
 *,/,% *,/,% unary +,-
Lower binary +,- binary +,- binary +,-

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

2

• Unary minus versus binary operators
Legal Usually Not Legal

(legal in C++)
a+(-b)*c a+-b*c

Expression Meaning Language(s) Discussion
-a/b (-a)/b or –(a/b) Equivalent
-a*b (-a)*b or –(a*b) Equivalent

-a**b -(a**b) Fortran, Ruby,
Visual Basic, Ada

** has higher
precedence than

unary -

7.2.1.2. Associativity
• When two or more operators have the same precedence in an expression,

associativity determines the order of evaluation. Consider the following example:
𝒂𝒂 − 𝒃𝒃 + 𝒄𝒄 − 𝒅𝒅

Operands b and c are in contention. The subtraction operator and the addition
operator are contending for operand b and operand c. Because addition and
subtraction associate to the left in almost all cases, the difference 𝑎𝑎 − 𝑏𝑏 is
computed first, then c is added to the difference and, finally d is subtracted from
the sum. The parenthesized expression below shows the order of operation.

(�(𝒂𝒂 − 𝒃𝒃) + 𝒄𝒄� − 𝒅𝒅)

Note how the parentheses are grouped on the left. Whenever operators
associate to the left, an equivalent event occurs. Parentheses pile up on the left.

An analogous situation occurs when operators associate to the right. Parentheses
pile up on the right. Consider the following example in C++:

𝒂𝒂 = 𝒃𝒃 = 𝒄𝒄 = 𝒅𝒅 + 𝟏𝟏

Obviously, we cannot assign b to a because we do not have a value for b yet.
Assignment operators associate to the right in C, C++, and Java. First the sum 𝒅𝒅 +
𝟏𝟏 is evaluated and assigned to c. Then c is assigned to b. Finally, b is assigned to
a.

(𝒂𝒂 = �𝒃𝒃 = �𝒄𝒄 = (𝒅𝒅 + 𝟏𝟏)��)

Note how parentheses pile up on the right.

In many languages the exponentiation operator associates to the right.

𝑎𝑎 ∗∗ 𝑏𝑏 ∗∗ 𝑐𝑐
is

(𝑎𝑎 ∗∗ (𝑏𝑏 ∗∗ 𝑐𝑐))

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

3

However, in Ada the exponentiation operator is non associative forcing the use
of parentheses.

Legal in Ada Not Legal in Ada
a**(b**c) a**b**c
(a**b)**c

7.2.1.3. Parentheses

• Programmers can alter the precedence and associativity rules by placing
parentheses in expressions. For example:

(𝒂𝒂 + 𝒃𝒃) ∗ 𝒄𝒄
(𝒂𝒂 + 𝒃𝒃) + (𝒄𝒄 + 𝒅𝒅)

In the foregoing example, if the sum of a, b, and c cause an overflow and d is
negative to the degree that an overflow can be prevented; the parentheses
shown above could be used to prevent an overflow.

7.2.1.4. Ruby Expressions
• All arithmetic, relational, assignment, array indexing, shifts, and bit-wise logic

operators are implemented as methods.
7.2.1.5. Conditional Expressions

average=(count==0)?0:sum/count;
if (count==0) average=0; else average=sum/count;

7.2.2. Operand Evaluation Order
• Only when the evaluation of operands causes side effects is the order of

evaluation important (only when an operand is a function call).

7.2.2.1. Side Effects

• A side effect of a function occurs when the function changes either one of its

parameters or a global variable.
• Detrimental side effect

int a=5;
int f(){a=17; return 3;}
int main()
{ a=a+f();
 return 0;
}

If the expression a+f() is evaluated from left to right it value is 8. However, if the
expression is evaluated from right to left its value is 20.

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

4

• Beneficial side effect

void swap(int& m,int& w){int b=m;m=w;w=b;}
int main()
{ int a(1),b(2);

swap(a,b);
return 0;

}

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

5

7.2.2.2. Referential Transparency and Side Effects

• A program has the property of referential transparency if any two expressions in
the program that have the same value can be substituted for one another
anywhere in the program, without affecting the action of the program.

//A fragment that has the property of referential transparency
result1=(fun(a)+b)/(fun(a)-c);
temp=fun(a);
result2=(temp+b)/(temp-c);

If the function fun has no side effects, result1 and result2 will be equal, because
the expressions assigned to them are equivalent. However, suppose fun has the
side effect of adding 1 to either b or c. Then result1 would not be equal to result2.

• The semantics of a referentially transparent program are much easier to

understand because functions become equivalent to mathematical functions.
• Pure functional programs are referentially transparent and have been used to

prove attributes of programs.

7.3. Overloaded Operators

• The multiple use of an operator is called operator overloading.

int a(1),b(2),c;
c=a&b; //bitwise and

int* p=&a; //address operator

• Problems.

o Using the same symbol for two completely unrelated operations is
detrimental to readability.

o The simple keying error of leaving out the first operand for a bitwise AND
operation can go undetected by the compiler, because it is interpreted as
an address-of operator. Such an error may be difficult to diagnose.

7.4. Type Conversions

• Type conversions are either narrowing or widening.
o A narrowing conversion converts a value to a type that cannot store even

approximations of all of the values of the original type.

int a; double pi(3.14159); a=(int)pi;

o A widening conversion converts a value to a type that can include at least
approximations of all of the values of the original type.

int a(37); double b; b=(double)a;

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

6

7.4.1. Coercion in Expressions

• A mixed-mode expression is one where an operator can have operands of

different types.

double pi(3.14159); double r(3.5); double d=2*pi*r;

Integer constant 2 and variable pi have different types. The integer constant is
coerced to type double prior to multiplication.

• Ada does not permit mixed mode expressions and forces the programmer to
employ explicit type conversions.

A:Integer;
B,C,D:Float;
…
C:=B*A; -- not legal in Ada

7.4.2. Explicit Type Conversion

• Most languages provide some capability for performing explicit conversions.
• In C-based languages, explicit type conversions are performed using casts.

int a(37); double b; b=(double)a;

• In Ada, explicit type conversions take the form of function calls.

Float(Sum)

7.4.3. Errors in Expressions
• An overflow occurs when the result of an arithmetic operation is too large to be

stored in the designated memory cell.
• An underflow occurs when the result of an arithmetic operation is too small to

be stored in the designated memory cell.
• An exception can be thrown (raised) by the runtime environment in some

languages when an overflow or underflow occurs.

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

7

7.5. Relational and Boolean Expressions
7.5.1. Relational Expressions

• A relational operator is an operator that compares the values of its two operands.

Language C-based Ada Lua Fortran 95 Pascal
Inequality
operator

!= /= ~= .NE. <>

• Javascript and PHP must convert and compare equality and inequality operators.

“7”==7 //The string “7” is coerced to a numeric 7 and the equality
 //operator returns true

“7”===7 //The string “7” is not coerced to a numeric 7 and the equality
 //operator returns false

• Relational operators always have lower precedence so arithmetic operations are

performed first.

a+1>2*b

7.5.2. Boolean Expressions

• Common Boolean operations include AND, OR, NOT, and EXCLUSIVE-OR.
• “In the mathematics of Boolean algebra, the OR and the AND operators must

have equal precedence.” However, Rosen in Discrete Mathematics and Its
Applications, 6th Ed. assigns precedence in the table below

TABLE 8 Precedence of
Logical Operators

Operator Precedence
¬ 1
∧
∨

2
3

→
↔

4
5

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

8

• In C-based languages, precedence of operators is given in the table below.

Operator Precedence
postfix ++, -- Highest

unary +, - , prefix ++, --, !
*, /, %

binary +, -
<, >, <=, >=

=, !=
&&
|| Lowest

• In Pascal.

Operator Precedence
not Highest

*, /, div, mod, and
unary +, -

binary +, -, or
=,<>,<,<=,>,>=,in Lowest

0<=a and a<=10 {Invalid in Pascal }
0<=a && a<=10 //valid in C-based languages}

7.6. Short-Circuit Evaluation

• A short-circuit evaluation of an expression is one in which the result is determined
without evaluating all of the operands or operators.

(a>=0)&&(b<10) //If a<0 then the expression (b<10) need not be evaluated

//Mandatory short-circuit evaluation
while ((index<listlen)&&(list[index]!=key)) index=index+1;

(a>b)||((b++)/3) //(a>b) or (b++/3!=0) – b++ need not be evaluated

• Short-circuit evaluation can be specified in Ada.

Index:=1;
while (Index<=Listlen) and then (List(Index)/=Key)

loop
Index:=Index+1;
end loop;

• Ruby, Perl, and Python implement short-circuit evaluation on all logical operators.

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

9

7.7. Assignment Statements
7.7.1. Simple Assignments

• ALGOL 60 pioneered the use := as the assignment operator to distinguish it from

the equality operator.

7.7.2. Conditional Targets

• Perl.

($flag?$count1:$count2)=0
is equivalent to
if ($flag) { $count1=0; } else { $count2=0;}

7.7.3. Compound Assignment Operators

• A compound assignment operator is a shorthand method of specifying a
commonly needed form of assignment.

• Introduced in Algol 68 and later modified slightly in C-based languages. Perl,
JavaScript Python, and Ruby also support compound assignment operators.

sum+=value; //sum=sum+value;

7.7.4. Unary Assignment Operators

• A unary assignment operator combine increment and decrement operations

with assignment.

count++; //count=count+1;
sum=++count; //count=count+1; sum=count;
sum=count++; //sum=count; count=count+1;

• When two unary operators apply to the same operand, the association is right to
left.

-count++; /- (count++) not (-count)++

Programming Languages Expressions and Assignment Statements
CMSC 4023 Chapter 7

10

7.7.5. Assignment as an Expression

• The value assigned is the value of the expression.

while((ch=getchar())!=EOF){…}

• Consider the statement.

a=b+(c=d/b)-1;

1. c=d/b;
2. t=b+c;
3. a=t-1;

• Assignment expressions permit a multi-target assignment.

sum=count=0;

• Some operators are more equal than others. Consider

if (x=y) …
or
if (x==y) …

7.7.6. List Assignment

• Perl.

($first,$second,$third)=(20,40,60);

7.8. Mixed Mode Assignments

• Fortran, C, C++, and Perl use coercion rules for mixed-mode assignment.

int a(29); double d=a;

