
Programming Languages Data Types
CMSC 4023 Chapter 6

1

6. Data Types
6.1. Introduction

Data Type A data type defines a collection of data values and a set of predefined
operations on those values.

Descriptor A descriptor is the collection of the attributes of a variable. If the
attributes are all static, descriptors are required only at compile time.
Descriptors are built by the compiler, usually as a part of the symbol
table.

Object An object is an instance of a user-defined abstract data type.

6.2. Primitive Data Types
Primitive Data Type Data types that are not defined in terms of other types are called

primitive data types.
6.2.1. Numeric Types

6.2.1.1. Integer
Definition: An integer is a number without a fractional part. The set of integers is the
union of the set of whole numbers and the set of negative counting numbers.

Integers and whole numbers. C++ implements both integers (signed) and whole
numbers (unsigned).

Ranges: The range of values a particular integer variable can take on is limited by the
number of bits allocated to that variable. The type-specifiers char, short, int, and long
define the relative range of values that a variable of that type can take on.

char ≤ short ≤ int ≤ long

Implementation: Integers are implemented as two’s complement binary integers.
Whole numbers are implemented as unsigned binary integers. Several field widths
(w) are common including 8, 16, 32, and 64 bits.

Integers: Let ℤ be the set of integers and 𝐼𝐼designate the set of integer types.

𝑰𝑰 = �𝒊𝒊 ∈ ℤ�−𝟐𝟐𝒘𝒘−𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝟐𝟐𝒘𝒘−𝟏𝟏 − 𝟏𝟏,𝒘𝒘 ∈ {𝟖𝟖,𝟏𝟏𝟏𝟏,𝟑𝟑𝟑𝟑,𝟔𝟔𝟔𝟔}�

• An 8-bit integer 𝒄𝒄 ranges from −𝟐𝟐𝟕𝟕 ≤ 𝒄𝒄 ≤ 𝟐𝟐𝟕𝟕 − 𝟏𝟏 or −𝟏𝟏𝟏𝟏𝟏𝟏 ≤ 𝒄𝒄 ≤ 𝟏𝟏𝟏𝟏𝟏𝟏
• An 16-bit integer 𝒔𝒔 ranges from −𝟐𝟐𝟏𝟏𝟏𝟏 ≤ 𝒔𝒔 ≤ 𝟐𝟐𝟏𝟏𝟏𝟏 − 𝟏𝟏 or −𝟑𝟑𝟑𝟑,𝟕𝟕𝟕𝟕𝟕𝟕 ≤ 𝒔𝒔 ≤

𝟑𝟑𝟑𝟑,𝟕𝟕𝟕𝟕𝟕𝟕
• 32-bit integer 𝒊𝒊 ranges from −𝟐𝟐𝟑𝟑𝟑𝟑 ≤ 𝒊𝒊 ≤ 𝟐𝟐𝟑𝟑𝟑𝟑 − 𝟏𝟏 or −𝟐𝟐,𝟏𝟏𝟏𝟏𝟏𝟏,𝟒𝟒𝟒𝟒𝟒𝟒,𝟔𝟔𝟔𝟔𝟔𝟔 ≤

𝒊𝒊 ≤ 𝟐𝟐,𝟏𝟏𝟏𝟏𝟏𝟏,𝟒𝟒𝟒𝟒𝟒𝟒,𝟔𝟔𝟔𝟔𝟔𝟔
• A 64-bit integer 𝒍𝒍 ranges from −𝟐𝟐𝟔𝟔𝟔𝟔 ≤ 𝒍𝒍 ≤ 𝟐𝟐𝟔𝟔𝟔𝟔

Programming Languages Data Types
CMSC 4023 Chapter 6

2

Let 𝑈𝑈 designate the set of unsigned integer types.

𝑼𝑼 = {𝒖𝒖 ∈ ℤ|𝟎𝟎 ≤ 𝒖𝒖 ≤ 𝟐𝟐𝒏𝒏 − 𝟏𝟏,𝒏𝒏 ∈ {𝟖𝟖,𝟏𝟏𝟏𝟏,𝟑𝟑𝟑𝟑,𝟔𝟔𝟔𝟔}}

• An 8-bit whole number 𝒄𝒄 ranges from 𝟎𝟎 ≤ 𝒄𝒄 ≤ 𝟐𝟐𝟖𝟖 − 𝟏𝟏 or 𝟎𝟎 ≤ 𝒄𝒄 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐.
• A 16-bit integer 𝒔𝒔 ranges from 𝟎𝟎 ≤ 𝒔𝒔 ≤ 𝟐𝟐𝟏𝟏𝟏𝟏 − 𝟏𝟏 or 𝟎𝟎 ≤ 𝒔𝒔 ≤ 𝟔𝟔𝟔𝟔,𝟓𝟓𝟓𝟓𝟓𝟓.
• A 32-bit integer 𝒊𝒊 ranges from 𝟎𝟎 ≤ 𝒊𝒊 ≤ 𝟐𝟐𝟑𝟑𝟑𝟑 − 𝟏𝟏 or 𝟎𝟎 ≤ 𝒊𝒊 ≤ 𝟒𝟒,𝟐𝟐𝟐𝟐𝟐𝟐,𝟗𝟗𝟗𝟗𝟗𝟗,𝟐𝟐𝟐𝟐𝟐𝟐.
• A 64-bit integer 𝒍𝒍 ranges from 𝟎𝟎 ≤ 𝒍𝒍 ≤ 𝟐𝟐𝟔𝟔𝟔𝟔 − 𝟏𝟏.

Integers and whole numbers. The relationship between integers and whole
numbers for a given size is shown in Figure 1.

unsigned integer

signed integer

0-2 n -2 n-1 2 n-1 -1 2n
 Figure 1. Signed and unsigned integer values

Representation: Implementation: Integers are implemented as two’s complement
binary integers. Whole numbers are implemented as unsigned binary integers.
Several field widths (w) are common including 8, 16, and 32 bits.

0 0 0 0 0 1 0 1

7 6 5 4 3 2 1 0
Bit Position

Figure 2. 8-bit whole number representation unsigned char uc=5;

1 1 1 1 1 0 1 1

7 6 5 4 3 2 1 0
Bit Position

Figure 3. 8-bit integer representation char sc=-5;

6.2.1.2. Floating-Point
Definition:

Real types simulate real numbers. Real types are discrete whereas the set of real numbers
is continuous. Real types are called floating-point numbers. The density of floating-point
numbers is shown on a real number line in Figure 1.

0 n-n-2n-4n 2n 4n
Figure 4. Density of floating-point numbers.

Programming Languages Data Types
CMSC 4023 Chapter 6

3

Sets: Each set is dependent on its representation.

8 bits 23 bits1 bit

s c f

0

22

23
30
31
Bit

Position
Legend: s: sign
 c: characteristic
 f: fraction
 b: bias
Figure 5. IEEE-754 single binary floating-point representation used to implement type float.

𝑅𝑅 = {𝑟𝑟 ∈ ℝ| − 1𝑠𝑠 × 2𝑐𝑐−𝑏𝑏 × 1.𝑓𝑓, 𝑠𝑠 ∈ {0,1}, 1 ≤ 𝑐𝑐 ≤ 254,𝑏𝑏 = 127,𝑓𝑓 = �𝑓𝑓𝑘𝑘 × 2−𝑘𝑘
23

𝑘𝑘=1

,𝑓𝑓𝑘𝑘 ∈ {0,1}}

11 bits 52 bits1 bit

s c f

0

51

52
62
63
Bit

Position
Legend: s: sign
 c: characteristic
 f: fraction
 b: bias

Figure 6. IEEE-754 double binary floating-point representation used to implement type

double.

𝑅𝑅 = {𝑟𝑟 ∈ ℝ| − 1𝑠𝑠 × 2𝑐𝑐−𝑏𝑏 × 1.𝑓𝑓, 𝑠𝑠 ∈ {0,1}, 1 ≤ 𝑐𝑐 ≤ 2047,𝑏𝑏 = 1023,𝑓𝑓 = �𝑓𝑓𝑘𝑘 × 2−𝑘𝑘
52

𝑘𝑘=1

,𝑓𝑓𝑘𝑘 ∈ {0,1}}

Programming Languages Data Types
CMSC 4023 Chapter 6

4

6.2.1.3. Complex
Fortran and Python support a primitive type of complex. A value of type complex is
an ordered pair of floating-point values. The example below is from Python
(7+3j)

6.2.1.4. Decimal
Computers designed for business systems applications often have support for decimal
data types. COBOL, C#, and Visual Basic have decimal types.

Decimal types are stored very much like character strings, using binary codes for the
decimal digits.

BCD Code
BCD codes were conceived to perform decimal arithmetic and are particularly useful
where monetary values are represented. Banks and other financial institutions
require that all monetary values be resolved to the nearest penny.

Four bits are used to represent each decimal digit leaving six unused codes as shown
below.

Decimal
Symbol

BCD Digit

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Each decimal digit is represented by a group of four (4) bits. For example,
 (185)10= (0001 1000 0101)BCD

Programming Languages Data Types
CMSC 4023 Chapter 6

5

6.2.2. Boolean Types
The set B of Boolean values consist of two values 𝐵𝐵 = {𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟, 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭}

Representation

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0
Bit Position

Figure 7. Boolean data representation for constant true.

6.2.3. Character Types

Representation:
A variable of type char can store a single member from the set of ASCII (American
Standard Code for Information Interchange).

A variable of type wchar_t can store a wide character occupying 16 bits.

Characters are integer codes. Let 𝐶𝐶8 be the set of all characters represented by type char.
𝐶𝐶8 = {𝑐𝑐 ∈ 𝐶𝐶8|0 ≤ 𝑐𝑐 ≤ 28 − 1}

Let 𝐶𝐶16 be the set of all characters represented by the type wchar_t.

𝐶𝐶16 = {𝑐𝑐 ∈ 𝐶𝐶16|0 ≤ 𝑐𝑐 ≤ 216 − 1}
A character is distinguished from an integer only when it is printed or displayed. Instead
of printing or displaying the integer code, the character face is printed or displayed.

Programming Languages Data Types
CMSC 4023 Chapter 6

6

Decimal

Code
ASCII

Character
Decimal

Code
ASCII

Character
Decimal

Code
ASCII

Character
Decimal

Code
ASCII

Character
0 NUL 32 SP 64 @ 96 `
1 SOH 33 ! 65 A 97 a
2 STX 34 “ 66 B 98 b
3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ‘ 71 G 103 g
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i

10 LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 , 76 L 108 l
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 O 111 o
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x
25 EM 57 9 89 Y 121 y
26 SUB 58 : 90 Z 122 z
27 ESC 59 ; 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 ^ 126 ~
31 US 63 ? 95 _ 127 DEL

Figure 8. ASCII Character Set

Programming Languages Data Types
CMSC 4023 Chapter 6

7

Coding Description
ASCII American Standard Code for Information Interchange

8-bit code
0 to 255

ISO 8859-1 International Standards Organization
8-bit code
0 to 255
Used by Ada 95

UCS-2 Unicode Consortium
16-bit code
published in 1991
First 128 characters are identical to ASCII
Java, JavaScript, Python, Perl, C#

6.3. Character String Types

Character String
Type

A character string type is one in which the values consist of sequences
of characters.

6.3.1. Design Issues

• Should strings be simply a special kind of character array or a primitive type?
• Should strings have static or dynamic length?

6.3.2. Strings and Their Operations
Operations

• assignment
• catenation
• substring reference
• comparison
• pattern matching

A substring reference is a reference to a substring of a given string.

Assignment and comparison operations on character strings are complicated by the possibility of
string operands of different lengths. For example, what happens when a longer string is assigned
to a shorter string or vice versa?

C uses char arrays to store character strings.
Representation:
A C-string is an array of characters terminated by a null character. For example, the string “toy”
is represented as shown in figure 1.

t o y

Figure 9. C-string “toy”.

Programming Languages Data Types
CMSC 4023 Chapter 6

8

Declaration:
A C-string is declared as an array of characters. Examples are given below.

char s[10]; //s is an array of 10 characters having elements s[0] .. s[9].

//s can hold up to 9 characters
char t[]=”one”; //t is a string initialized to the characters ‘o’, ‘n’, ‘e’, ‘\0’
char u[3]=”one”; // u is initialized to the characters ‘o’, ‘n’, ‘e’
 //u is not a string.
char v[]={‘o’,’n’,’e’,’\0’}; //v is a string having four (4) characters. Each character is initialized.
char e[]=””; //e is a string having a single character, the null terminator.

//e is the empty string

Strings and pointers to strings:
1. Strings are referenced by pointers to the actual string. For example, variable t, is used to

reference string t declared as char t[]=”toy”;
2. When the name of an array appears without a subscripting operator [], the type of the

array name is changed to a pointer to the element type. For example, t has type char*
because elements of t have type char and t is an array.

3. String pointers can be declared directly. For example, char* s;. Variable s can be assigned
to point to a string but no such assignment has been made yet. Variable s is said to be
undefined. References to s will likely cause an execution-time error.

4. A string pointer can be initialized. For example char* s=”toy”; Storage for string “toy” is
allocated in the constant area of the program. The string “toy” cannot be changed. String
s, however, can be reassigned. Refer to figure 2.

t
o
y

s

char*

Figure 10. char* s=”toy”;

Programming Languages Data Types
CMSC 4023 Chapter 6

9

Operations:
#include <string>

Declaration Description Example
int strlen(char* s); Function strlen returns the

number of characters in the string
referenced by parameter s. The
terminating character is excluded
from the count returned by
function strlen.

char s[]=”one”;
int c=strlen(s);
cout << c;
Output
3

char* strcpy(char* d,char* s); Function strcpy copies the
contents of the string s to the
string d, overwriting the contents
of d. The entire contests of s are
copied, plus the terminating null
character even if s is longer than d.
The argument d is returned.

char d[]=”destinataion”;
char s[]=”source”;
char* t=strcpy(d,s);
cout << d;
Output
source

char* strcat(char* d,char* s); Function strcat appends the
contents of string s to string d. A
pointer to string d is returned. The
null character that terminates d
(and perhaps other characters
following it in memory) is
overwritten with characters from
s and a new terminating null
character. Characters are copied
from s until a null character is
encountered in s. The memory
beginning with d is assumed to be
large enough to hold both strings.

char d[10]=”One”;
char s[]=”, two”;
char* t=strcat(d,s);
Ouput
One, two

int strcmp(char* u,char* v); Function strcmp lexicographically
compares the contents of the null-
terminated string u with the
contents of the null-terminated
string v. It returns a value of type
int that is less than zero if vu < ;
equal zero if vu = ; and greater
than zero if .vu >

char u[]=”ted”;
char v[]=”tom”;
int c=strcmp(u,v);
cout << c;
Ouput
-1

Table 1. Selected functions in library cstring (#include <cstring>) continued

Programming Languages Data Types
CMSC 4023 Chapter 6

10

C++ strings
Representation:

The representation of C++ string is hidden.
Declaration:

Include file #include <string>. Use type name string. Review declarations below.
string s; //s is a string.
string t=”one”; //string t is initialized to the string “one”
string u(“two”); //string u is initialized to the string “two”
string e(“”); //string e is initialized to the empty string

Examples:
Program p01 illustrates how to find the length of a string

Figure 11. Program p01.
Program p01 output.
length(toy)=3
Program p02 illustrates string assignment.

Figure 12. Program p02.

Program p02 output.
d=source

#include <iostream>
#include <string>
using namespace std;
int main()
{ string s="toy";
 cout << "length(" << s << ")=" << s.length();
 cout << endl;
 return 0;
}

#include <iostream>
#include <string>
using namespace std;
int main()
{ string s="source";
 string d="destination";
 d=s;
 cout << "d=" << d;
 cout << endl;
 return 0;
}

Programming Languages Data Types
CMSC 4023 Chapter 6

11

Program p03 illustrates string concatenation.

Figure 13. Program p03.

Sample program p03 dialog.
[tt@cs L21]$ p03

Enter a string. One,
 One,
Enter a string. two,
 One, two,
Enter a string. buckle
 One, two, buckle
Enter a string. my
 One, two, buckle my
Enter a string. shoe.
 One, two, buckle my shoe.
Enter a string.^D
[tt@cs L21]$

#include <iostream>
#include <string>
using namespace std;
int main()
{
 string s("");
 for (;;) {
 cout << endl;
 cout << "Enter a string. ";
 string t;
 cin >> t;
 if (cin.eof()) break;
 s=s+" ";
 s=s+t;
 cout << s << " ";
 }
 cout << endl;

Programming Languages Data Types
CMSC 4023 Chapter 6

12

Pattern matching

Regular expressions used to match patterns
Examples

/[A-Za-z][A-Za-z\d]+/ The first character must be a letter
The second and subsequent characters must be either a
letter or a digit.

/\d+\.?\d*|\.\d+/ One or more digits followed by
Optionally by a decimal point followed by
zero or more digits
OR
a decimal point followed by
one or more digits

6.3.3. String Length Options
static length string C, Python

The length of the string is fixed during compilation
like an array bound.

limited dynamic length string Strings vary up to maximum length that is defined
during compilation.

dynamic length string Varying length strings with no maximum similar to
the C++ string defined by class string in the standard
C++ library.

6.3.4. Evaluation

Strings that are implemented as arrays are more cumbersome than strings implemented
as a type. When strings are implemented as an array, an assignment must be
accomplished via a loop whereas strings implemented as a type have the advantage of
assignment implemented via the assignment operator.

6.3.5. Implementation of Character String Types

Static string

Length
Address

Figure 14. Compile-time descriptor for static strings.
Limited dynamic string

Maximum length

Current length
Address

Figure 15. Compile-time descriptor for static strings.

Programming Languages Data Types
CMSC 4023 Chapter 6

13

6.4. User-Defined Ordinal Types
• An ordinal type is one in which the range of possible values can easily be associated with

the set of integers or non-negative integers.
• Primitive ordinal types include

o integer
o char
o Boolean

• User-defined ordinal types include
o enumeration
o subrange

6.4.1. Enumeration Types
From C#
enum days {sun,mon,tue,wed,thu,fri,sat};
Enumeration constants sun, mon, …, sat are names for integer values 0, 1, …, 6.
Enumerated type days defines the set of value sun, mon, …, sat and variables of type days
can take on those values.

Design issues are:

• Is an enumeration constant allowed to appear in more than one type definition,
and if so, how is the type of an occurrence of that constant in the program
checked?

• Are enumeration values coerced to integer?
• Are any other types coerced to an enumeration type?

6.4.1.1. Designs

Enumeration types were first widely used in C and Pascal.

Language Declaration and use
Pascal type day = (sun,mon,tue,wed,thu,fri,sat);

var weekday:day;
weekday:=wed;
weekday:=succ(weekday);
weekday:=pred(tue);

C enum day{sun,mon,tue,wed,thu,fri,sat};
day weekday;
weekday=wed;
weekday=weekday+1;
weekday=tue-1;

C++ enum day{sun,mon,tue,wed,thu,fri,sat};
day weekday;
weekday=wed;
weekday=(day)(weekday+1);
weekday=(day)(tue-1);

Programming Languages Data Types
CMSC 4023 Chapter 6

14

6.4.1.2. Evaluation
• Improved readability and reliability. Named values are easily recognized

whereas coded values are not.
• Ada, C#, and Java 5.0 prohibit arithmetic operations on constants and

variables having enumeration an enumeration type.
• No enumeration variable can be assigned a value outside its defined range.

6.4.2. Subrange Types
• A subrange type is a contiguous subsequence of an ordinal type. For example,

12..14 is a subrange of integer type. Subrange types were introduced by Pascal
and are included in Ada.

6.4.2.1. Ada’s Design
Language Declaration and use
Pascal type day = (sun,mon,tue,wed,thu,fri,sat);

var sick:array[day] of boolean;
sick[mon]:=true;

Ada type Days is (Mon, Tue, We, Thu, Fri, Sat, Sun);
subtype Weekdays is Days range Mon..Fri;
subtype Index is Integer range 1..100;

• The compiler must generate range-checking code for every assignment to a
subrange variable.

6.4.2.2. Evaluation
• Subrange types enhance readability by making it clear to readers that variables

of subtypes can store only certain ranges of values.
6.4.3. Implementation of User-Defined Ordinal Types

• Enumeration types are usually implemented as integers.
• Subrange types are implemented in exactly the same way as their parent types.
• Range checks must be implicitly included by the compiler in every assignment of

a variable or expression to a subrange variable.
6.5. Array Types

• An array is an aggregate where all the elements usually have the same type.
• Originally, in Fortran, the syntax of an array was made to model that of

mathematical subscripts, for example
Mathematical Representation Typical Array Representation

𝒂𝒂𝒊𝒊 a[i]
𝒂𝒂𝒊𝒊𝒊𝒊 a[i][j]

or
a[I,j]

• In many languages, such as C, C++, Java, Ada, and C# all of the elements have the
same type.

• In other languages, such as JavaScript, Python, and Ruby, variables are typeless
references to objects or data values. In these cases, arrays still consist of
elements of a single type, but the elements can reference objects or data values
of different types.

Programming Languages Data Types
CMSC 4023 Chapter 6

15

6.5.1. Design Issues
Design issues include:
• What types are legal for subscripts?
• Are subscripting expressions in element references range checked?
• When are subscript ranges bound?
• When does array allocation take place?
• Are ragged or rectangular multidimensional arrays allowed, or both?
• Can arrays be initialized when they have their storage allocated?
• What kinds of slices are allowed, if any?

6.5.2. Arrays and Indices
• A reference to an element of an array has two parts:

o The first part is the name of the array.
o The second part is the subscript of index.
Examples:

Language Declaration(s) Reference
C++ double A[9];

int i=5;

A[i]

Pascal var
 A:array[0..9] of real;
 i:integer;

…
i:=5;

A[i]

• A reference to an element in an array can be thought of as a mapping.
array_name(subscript_value_list)→element

• The use of parentheses is deliberate: parentheses denote a function in mathematics
and functions are characterized using the mapping notation 𝑓𝑓:𝐷𝐷 → 𝑅𝑅 meaning
function 𝑓𝑓 is a map from the set 𝐷𝐷 to the set 𝑅𝑅. Specific values of 𝐷𝐷, 𝑑𝑑 ∈ 𝐷𝐷 are
mapped to set 𝑅𝑅 by function 𝑓𝑓 using the notation 𝑓𝑓(𝑑𝑑).

• Ada retained the mathematical interpretation of arrays and preserved the use of
parentheses for arrays. For example:

Sum:=Sum+B(I);
• Designers of other languages like C, C++, and Java specifically elected to distinguish a

reference to an array from a reference to a function. Square brackets are used to
enclose subscript values.

Sum:=Sum+B[I];
• A reference to a multidimensional array differs from language to language also.

Language Declaration(s) Reference
C++ int A[3][5]; for (int r=0;r<3;r++) {

for (int c=0;c<5;c++) {
A[r][c]=R.Sample();

}
}

Programming Languages Data Types
CMSC 4023 Chapter 6

16

Language Declaration(s) Reference
Pascal type

 imatrix=array[0..2,0..4] of
 integer;
var A:imatrix;

for r:=0 to 2 do
begin

for c:=0 to 4 do
begin

 A[r,c]:=random(100);
end

end

• Two distinct types are employed to construct an array type.
o the element type
o the index type

• The element type can be any type.
• The index type must be an ordinal type that is implemented as an integer.

Language Declaration and use
Pascal program p03;

type
day_t= (sunday,monday,tuesday,wednesday
 ,thursday,friday,saturday
);
activity_t=(work,play);

var
day:array[day_t] of activity_t;

begin{p03}
day[sunday]:=play;
day[monday]:=work

end.{p03}
• Ada and Pascal for-loops can use any ordinal type variable for counters.
• Most contemporary languages do not specify range checking of subscripts.
• Java, ML, and C# do specify range checks.
• By default, Ada checks the range of all subscripts.

Programming Languages Data Types
CMSC 4023 Chapter 6

17

6.5.3. Subscript Bindings and Array Categories

There are five categories of arrays, based on binding to subscript ranges, the binding to
storage, and from where the storage is allocated.

Category Description
static array An array in which the subscript ranges are statically bound and

storage allocation is static (allocated before run time).
int A[10]; //A static array
int main()
{ return 0;
}

fixed stack-
dynamic array

An array in which the subscript ranges are statically bound, but the
allocation is done at declaration elaboration time during
execution.
void f(void)
{ int A[10]; //A fixed stack-dymnamic array
}
int main()
{ f();

return 0;
}

stack-dynamic
array

An array in which both the subscript ranges and the storage
allocation are dynamically bound at elaboration time.
void f(int sz)
{ int A[sz]; //A stack-dymnamic array
}
int main()
{ f(25);
 return 0;
}

fixed heap-
dynamic array

An array in which the subscript ranges and the storage binding are
both fixed after storage is allocated.
void f(int sz)
{ int* A=new int[sz]; //A fixed heap-dymnamic array
}
int main()
{ f(25);
 return 0;
}

heap-dynamic
array

An array in which the binding of subscript ranges and storage
allocation is dynamic and can change any number of times during
the array’s lifetime.

• C and C++ permit all types of arrays except heap-dynamic arrays.
• Fortran 95 supports fixed heap-dynamic arrays.
• In Java, all arrays are fixed heap-dynamic arrays.
• C# supports heap-dynamic arrays via class ArrayList.

Programming Languages Data Types
CMSC 4023 Chapter 6

18

ArrayList intList = new ArrayList();

6.5.4. Array Initialization
Language Initialization Example
Fortran 94 Integer, Dimension (3) :: List = (/0,5,5/)
C,C++,Java,C# int list[]={4,5,7,83};
C,C++ char* names[]{“Bob”,”Jake”,”Darcie”};
Java String[] names = [“Bob”,”Jake”,”Darcie”];

//”Bob”,”Jake”, and “Darcie” are references to String objects
Ada List: array(1..5) of Integer :=(1,3,5,7,9);

Bunch:array(1..5) of Integer:=(1=>17,3=>34,others=>0);
Python [x*x for x in range(12) if x%3==0]

produces the array
[0,9,36,81]

6.5.5. Array Operations

• An array operation is an operation that operates on an array as a unit.
• Common array operations include:

o assignment
o catenation
o equality and inequality comparison
o slices

• C-based languages do not provide any array operations
o except through the methods of Java, C++, and C#

• Perl supports array assignment
• Pascal provides array assignment for conformant arrays – for arrays that have the

same index values.
• Ada supports array assignment, and catenation (&) where both operands have a

single dimension
• Python’s arrays are called lists. Operations on lists include

o assignment
o catenation (+)
o element membership (in)

• Fortran 95 supports array operations called elemental because they are between
pairs of elements. Elemental operations include:

o addition (+): The sum of two arrays is an array having the same dimensions
where each element in the sum is the sum of corresponding elements in the
operands.

o assignment
o relational operators
o arithmetic operators

• Fortran 95 also has libraries having the following operations
o matrix multiplication
o matrix transpose
o vector dot product

• APL: arrays are central to APL

Programming Languages Data Types
CMSC 4023 Chapter 6

19

• Addition, subtraction, multiplication, and division are defined for vectors, an array
having a single dimension, and matrices.

• Examples
𝐴𝐴 + 𝐵𝐵 //adds scalars, vectors, or matrices
𝑉𝑉 reverses the elements of a Vector.
Φ𝑀𝑀 reverses the columns of a Matrix.
Φ𝑀𝑀 reverses the rows of a Matrix.
𝜙𝜙𝜙𝜙 transposes the Matrix, ie the rows become columns and vice versa.
÷ 𝑀𝑀 inverts the Matrix.

• The . (dot) operator joins selected pairs of operators, for example
+.× for two vectors the combined operator is the dot product
+.× for two matrices the combined operator is matrix multiplication

6.5.6. Rectangular and Jagged Arrays
Term Description
rectangular
array

A multidimensional array in which all of the rows have the same
number elements, all of the columns have the same number of
elements, and so forth. Rectangular arrays model rectangular tables
exactly.

jagged array An array is which the lengths of the rows need not be the same. For
example, a jagged matrix may consist of three rows, one with five
elements, one with seven elements, and one with twelve elements.
This also applies to the columns and higher dimensions.

• C, C++ and Java support jagged arrays but not rectangular arrays (Your instructor

believes, contrary to the text, that C, C++, and Java do support rectangular arrays and
that rectangular arrays appear many times more often than jagged arrays.

//A jagged array, I think
int** A=new int*[3];
A[0]=new int[3];
A[1]=new int[5];
A[2]=new int[12];

//A rectangular array
int A[3][12];

• Languages that support jagged arrays employ a separate pair of brackets for each
dimension

A[2][7]

• Languages that support rectangular arrays define the subscript list to be enclosed in

a single pair of square brackets where each subscript is separated by a comma. (Your
instructor has an example in Pascal where a reference to an element in a matrix can
be appears in both forms, A[2][7] and A[2,7]. Further, the element reference has no
bearing on whether the array is jagged or rectangular.)

Programming Languages Data Types
CMSC 4023 Chapter 6

20

A[2,7]

6.5.7. Slices

A slice of an array is some substructure of that array. Examples
Example Explanation
int A[10];
A[2..7]

Element 2, 3, 4, 5, 6, and 7 of array A.

int A[10][10];
A[2][5..9]

Elements 5 – 9 of row 2.

• Python supports slices, including entire rows or columns, or consecutively numbered

parts of rows or columns. Python also supports more complex slices of arrays
including a slice that references every other element of vector.

• Fortran 95 supports complex slices including columns.
• Perl supports slices in two forms, a list of specific subscripts or a range of subscripts.
• Ruby supports slices with the slice method of its Array object.
• Ada supports slices of single dimensioned arrays with consecutive indexes.

6.5.8. Evaluation

• Arrays have been included in virtually all programming languages.
• Advances in arrays since their introduction in FORTRAN have been the inclusion of

ordinal types as indexes.
• Newest arrays are associative arrays.

6.5.9. Implementation of Array Types

3 4 7
6 2 5
1 3 8
• row major order

3, 4, 7, 6, 2, 5, 1, 3, 8
• column major order

3, 6, 1, 4, 2, 3, 7, 5, 8
A 1 2 … j-1 j … n
1
2
…
i-1
i X

…
m
• location(A[I,j])

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴[𝑖𝑖, 𝑗𝑗]) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴[1,1])
+ ((((# of rows above the 𝑖𝑖th row) × (size of a row)
+ (number of elements left of the 𝑗𝑗th column)) ∗ element size)

Programming Languages Data Types
CMSC 4023 Chapter 6

21

• Compile-time descriptors
Array

Element Type
Index Type

Index lower bound
Index upper bound

Address

Integer type descriptor

typkind size alignment

Typkind int int

tk_integer 32 32

typkind

Typkind

size

int

alignment

int

index element

Typ* Typ*

Array type descriptor

Range Type descriptor

typkind

Typkind

size

int

alignment

int

lo hi

Sym* Sym*

tk_range 8 8

typkind size alignment

Typkind int int

Character Type Descriptor

tk_character 8 8

identifier

string

symkind

Symkind

value

string

typ

Typ*

Constant Symbol Descriptor

“e”sk_constant “”

identifier

string

symkind

Symkind

value

string

typ

Typ*

Constant Symbol Descriptor

“a”sk_constant “”

160 64

identifier

string

symkind

Symkind

typ

Typ*

sk_type “carry”

Type symbol descriptor

Array Type Descriptor

type carray=array [‘a’..’e’] of integer;

Programming Languages Data Types
CMSC 4023 Chapter 6

22

6.6. Associative Arrays
6.6.1. Structure and Operations

• An associative array is an unordered collection of data elements that are indexed by
an equal number of values called keys.

• Perl (called hashes)
%salaries = (“Gary”=>75000,”Perry”=>57000,”Mary”=>55750,”Cedric”=>47850);

$s=$salaries{“Perry”};
$s=57000

• C++
static map<string,int> RW;
…
#define CASE 260
RW[“and”]=257;
RW[“array”]=258;
RW[“begin”]=259;
RW[“case”]=CASE;
…
int TokenMgr(int t)
{ int tc=t;

if (t==IDENTIFIER) {
char* s=ToLower(yytext);
tc=RW[s];
if (tc==0) tc=t;

}
return tc;

}
6.6.2. Implementing Associative Arrays

• Perl, PHP, C++ - hash
6.7. Record Types

• A record is an aggregate of data elements in which the individual elements are
identified by names and accessed through offsets from the beginning of the structure.

• In C, C++, and C# records are supported with the struct data constructor.
• Design issues that are specific to records include:

o The syntactic form of references to fields
o Are elliptical references allowed?

6.7.1. Definition of Records
• The fundamental difference between a record and an array is that a record has

elements, or fields, are not referenced by indices. Instead, the fields are named
with identifiers, and references to the fields are made using these identifiers.

• (Arrays are aggregates containing elements of the same type whereas records are
aggregates containing elements of different types.)

Programming Languages Data Types
CMSC 4023 Chapter 6

23

• Aboriginal COBOL
01 EMPLOYEE-RECORD.

02 EMPLOYEE-NAME.
05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99.
• Pascal

type name_type=array [1..20] of char;
type employee_name_type = record

first,middle,last:nametype
end{employee_name_type};

type employee_record_type = record

employee_name:employee_name_type;
hourly_rate:real

end{employee_record_type};

var employee_record:employee_record_type;

employee_record.first:=”Thomas “;
employee_record.middle:=”Alva “;
employee_record.last:=”Edison “;

6.7.2. References to Record Fields
• COBOL – elliptical

MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE-RECORD
MIDDLE OF EMPLOYEE-NAME
MIDDLE

• Pascal
employee_record.employee_name.first:=”Thomas “;
with employee_record.employee_name do
begin

first:=”Thomas “;
middle:=”Alva “;
last:=”Edison “

end
Term Description
fully qualified reference A reference in which all intermediate record names, from the

largest enclosing record to the specific field, are named in the
reference.

elliptical reference A reference to the specific field is given but any or all of the
enclosing record names can be omitted, as long as the
resulting reference is unambiguous.

Programming Languages Data Types
CMSC 4023 Chapter 6

24

6.7.3. Operations on Records
• COBOL

MOVE CORRESPONDING
• C, C++, Java

field assignment
record assignment

6.7.4. Evaluation
• Elliptical references allowed COBOL detract from readability
• Both records and arrays describe aggregate data. The difference is that elements

of arrays typically share the same type where as a record is composed of arbitrary
types.

6.7.5. Implementation of Record Types
• Fields in records are stored in adjacent memory locations.
• However, data of different types have different sizes and alignment specifications.

For example IEEE 754 Double Binary data occupy 64 bits, or 8 bytes, and are aligned
on 8-byte boundaries. Contrast the IEEE 754 Double Binary data to character data
that often occupy one byte and are aligned on byte boundaries.

struct example1 {
char c;
int i;
unsigned short s;
double f;

 };
example1 e1;

c i s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
f

record endse1

record beginse1

Record e1 layout

6.8. Tuple Types

A tuple is a data type that is similar to a record, except that the elements are not names.

Python tuple:

myTuple = (3, 5.8, ‘apple’)

myTuple[1] = 3

Programming Languages Data Types
CMSC 4023 Chapter 6

25

ML tuple:
val myTuple = (3, 5.8, ‘apple’);
ML tuples must have at least two elements.
#1(myTuple)=3

type intReal = int * real;

Values of this type consist of an integer and a real.

F#
let tup = (3, 5, 7);;
let a, b, c = tup;;
a=3, b=5,c=7

Tuples are used in Python, ML, and F# to allow functions to return multiple values.

6.9. List Types

Lists were first supported in the first functional programming language, LISP. They have always
been part of the functional languages, but it recent years they have their way into some
imperative languages.

List is Scheme and Common LISP are delimited by parentheses and the elements are not separated
by any punctuation. For example

(A B C D)

Nested lists have the same form, so we could have

(A (B C) D)

Data and code have the same syntactic for in LISP and its descendants. If the list (A B C) is
interpreted as code, it is a call to the function A with parameters B and C.

The fundamental list operations in Scheme are two functions that take lists apart and two that
build lists. The CAR function returns the first element of its list parameter. For example:

(CAR ‘(A B C))

The quote before the parameter list is to prevent the interpreter from considering the list a call
to the A function with the parameters B and C, in which case it would interpret it. This call to CAR
returns A.

The CDR function returns its parameter list minus its first element. For example, consider

(CDR ‘(A B C))

This function call return the list (B C).

Programming Languages Data Types
CMSC 4023 Chapter 6

26

In Scheme and Common LISP, new lists are constructed with the CONS and LIST functions. The
function CONS takes two parameters and returns a new list with its first parameter as the first
element and its second parameter as the remainder of that list. For example, consider the
following:

(CONS ‘A ‘(B C))

This call returns the new list (A B C).

The LIST function takes any number of parameters and returns a new list with the parameters as
its elements.

(LIST ‘A ‘B ‘(C D))

This call returns the new list (A B (C D))

ML lists [5, 7, 9]
[] – the empty list
CONS in ML is 3 :: [5, 7, 9] resulting in [3, 5, 7, 9]

Scheme ML
CAR hd (head)
CDR tl (tail)

hd [5, 7, 9] is 5
tl [5, 7, 9] is [7, 9]

F# Operations hd and tl are the same, but they are called as methods of the List class as in List.hd
[1; 3; 5; 7], which returns 1.

Python has a powerful method for creating arrays called list comprehensions.

[x * x for x in range (12) if x % 3 == 0]

The range function creates the array [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

The conditional filters out all numbers in the array that are not evenly divisible by 3.

The expression squares the remaining numbers resulting in the following array.

[0, 9, 36, 81]

6.10. Union Types
• A union is a type whose variables may store different type values at different times

during program execution.
• A union is a type whose storage has multiple definitions.

Programming Languages Data Types
CMSC 4023 Chapter 6

27

union U {
char c;
int i;
double d;

};
U u;
u.c=’a’;
u.i=5;
u.d=1.602e-19;

In the example above variable c occupies the most significant byte of integer i and
floating point variable d.

0 1 2 3 4 5 6 7

c

i

d

union U

6.10.1. Design Issues
• A union is a type whose variables may store different type values at different times

during program execution.
6.10.2. Discriminated Versus Free Unions

• A free union defines a type where any field in the union may be assigned without
validating the field type. This is inherently dangerous because overwriting a part of
the storage allocated to a field of a different type will likely destroy that field.

• A discriminated union contains an additional field, called the discriminant, that
specifies which of the several types is currently valid.

type Shape = (Circle,Triangle,Rectangle);
type Colour = (Red,Green,Blue);
type Figure = record

Filled: Boolean;
Color: Colour;
case Form: Shape of

Circle:(Diameter: real);
Triangle:(Left_Side: integer;Right_Side: integer;Angle:real;);
Rectangle:(Side_1: integer;Side_2: integer;);

end{Figure};

Programming Languages Data Types
CMSC 4023 Chapter 6

28

Filled Color Form

Diameter

Side_1 Side_2

Left_Side Right_Side Angle

Discriminated Union Figure (Pascal)

6.10.3. Ada Union Types

type Shape is (Circle,Triangle,Rectangle);
type Colour is (Red,Green,Blue);
type Figure (Form: Shape) is

record
Filled: Boolean;
Color: Colour;
case Form is

when Circle =>
Diameter: Float;

when Triangle =>
Left_Side: Integer;
Right_Side: Integer;
Angle: Float;

when Rectangle =>
Size_1: Integer;
Side_2: Integer;

end case;
end record;

Filled Color Form

Diameter

Side_1 Side_2

Left_Side Right_Side Angle

Discriminated Union Figure (Ada)

• A constrained variant variable permits static type checking.

Figure_2: Figure(Form => Triangle);

The constrained variable Figure_2 can only be a triangle and cannot be changed to
another variant.

• An unconstrained variant variable does not permit static type checking. However,
consistency is maintained by allowing only entire records to be assigned. Individual
fields may not be assigned in this variant record.

Figure_1: Figure;

Figure_1:=

(Filled => True

Programming Languages Data Types
CMSC 4023 Chapter 6

29

, Color => Blue
, Form => Rectangle
, Side_1 => 12
, Side_2 =>3
);

• Run-time (dynamic) type checking of variant records detects the error arising from

the if-statement below when the Form-tag was assigned the value Circle.

if (Figure_1.Diameter > 3.0) …

6.10.4. Evaluation

• Unions are potential unsafe in some languages including Fortran, C, and C++ that are

not strongly typed.
• Unions can be safely used in Ada because the design allows for static type checking

and, if desired, run-time type checking.
• Java and C# do not permit unions

6.10.5. Implementation of Union Types

type Node (Tag:Boolean) is

record
case Tag is

when True => Count: Integer;
when False => Sum: Float;

end case;
end record;

6.11. Pointer and Reference Types

• A pointer type is one in which the variables have a range of values that consist of
memory addresses and a special value, nil.

• Pointers are used for
o Indirect addressing
o Access dynamically allocated storage in a space commonly called a heap.

• Variables that are dynamically allocated from the heap are called heap-dynamic
variables. They often do not have identifiers associated with them and thus can be
referenced only by pointer or reference type variables. Variables without names are
called anonymous variables.

• A pointer variable is distinguished from other types of variables and called a reference
type. Other types of variables, including arrays and records, called structured types;
and scalar variables are called value types because they store actual values rather
than references to values.

6.11.1. Design Issues
• What are the scope and lifetime of a pointer variable?
• What is the lifetime of a heap-dynamic variable?
• Are pointers restricted as to the type of value to which they can point?

Programming Languages Data Types
CMSC 4023 Chapter 6

30

• Are pointers used for dynamic storage management, indirect addressing, or both?
• Should the language support pointer types, reference types, or both?

6.11.2. Pointer Operations

• Assignment
int*p = new int;

0 A F4

0 A F4

in t

in tp
m a in

a c t iva t io n
re co rd

H e a p

id ty p e va lu e

va lu ety p e

Figure 6.9.2 Pointer Assignment

• Dereferencing

6.11.3. Pointer Problems
PL/I introduced pointers. PL/I pointers were highly flexible and could point to both heap-
dynamic variables and other program variables. To avoid problems with pointers, some
newer languages, like Java, have replaced pointers completely with reference types, which,
along with implicit deallocation, minimize the primary problems with pointers. A reference
type is really only a pointer with restricted operations.

6.11.3.1. Dangling Pointers
A dangling pointer, or dangling reference, is a pointer that contains the address of a
heap-dynamic variable that has been deallocated.
Dangers:

1. The location being pointed to may have been reallocated to some new heap-
dynamic variable.

2. If the new variable is not the same type as the old one, type checks of uses of the
dangling pointer are invalid.

3. If the dangling pointer is used to change the heap-dynamic variable, the value of
the new heap-dynamic variable will be destroyed.

4. It is possible that the location now is being temporarily used by the storage
management system, possibly as a pointer in a chain of available blocks of storage,
thereby allowing a change to the location to cause the storage manager to fail.

Programming Languages Data Types
CMSC 4023 Chapter 6

31

Creating a dangling pointer.
1. A new heap-dynamic variable is created and pointer p1 is set to point at it.
2. Pointer p2 is assigned p1’s value.
3. The heap-dynamic variable pointed to by p1 is explicitly deallocated but p2 is not

changed by the operation. p2 is now a dangling pointer.

int* arrayPtr1;
int* arrayPtr2=new int[100];
arrayPtr1=arrayPtr2;
delete[] arrayPtr2;

//Now, arrayPtr1 is dangling.

6.11.3.2. Lost Heap-Dynamic Variables

A lost heap-dynamic variable is an allocated heap-dynamic variable that is no longer
accessible to the user program. Such variables are often called garbage.

1. Pointer p1 is set to point to a newly created heap-dynamic variable.
2. p1 is later set to point to another newly created heap-dynamic variable.

int* p1=new int[100];
p1=new int;
//The array created by new int[100] is lost and is now garbage.

6.11.4. Pointers in Ada

Ada’s pointers are called access types. The dangling-pointer problem is partially alleviated
by Ada’s design, at least in theory. A heap-dynamic variable may be (at the implementer’s
option) implicitly deallocated at the end of the scope of its pointer type; thus, dramatically
lessening the need for explicit deallocation.

However, few if any Ada compilers implement this form of garbage collection, so the
advantage is nearly always in theory only.

Unfortunately, the Ada language also has an explicit deallocator, Unchecked_Deallocation.
Unchecked_Deallocation can cause dangling pointers.

Lost heap-dynamic variables are not eliminated by Ada’s design.

Programming Languages Data Types
CMSC 4023 Chapter 6

32

6.11.5. Pointers in C and C++

In C and C++, pointers can be used in the same ways as addresses are used in assembly
languages.

C and C++ permit pointer arithmetic making their use more interesting in those languages
compared to languages that do not permit pointer arithmetic.

int* ptr;
int count, init;
…
ptr =&init; //assign the address of init to ptr
count = *ptr; //dereference the value stored in variable ptr to refer to the value stored
 //in init. Assign the value in init to count.

Pointer arithmetic in C and C++
int list[10];
int* ptr;
ptr=list;
• *(ptr+1) is equivalent to list[1]
• *(ptr+index) is equivalent to list[index]
• ptr[index] is equivalent to list[index]

C and C++ include pointers of type void*, which can pint at values of any type.

6.11.6. Reference Types

A reference type variable is similar to a pointer, with one important and fundamental
difference: A pointer refers to an address in memory, while a reference refers to an object or
value in memory. As a result, although it is natural to perform arithmetic on address, it is not
sensible to do arithmetic on references.

C++ includes a special kind of reference type that is used primarily for the formal parameters
in function definitions. A C++ reference type variable is a constant pointer that is always
implicitly dereferenced.

int result = 0;
int& ref_result=result;
ref_result=100;

In the foregoing code segment result and ref_result are aliases.

In their quest for increased safety over C++, the designers of Java removed C++-style pointers
altogether. Java reference variables can be assigned to refer to different class instances: they
are not constants. All Java class instances are deferenced by reference variables.
That is, in fact, the only use of reference variables in Java.

String str2;

Programming Languages Data Types
CMSC 4023 Chapter 6

33

str1 = “This is a Java literal string”;

In this code, str1 is defined to be a reference to a String class instance or object. It is initially
set to null. The subsequent assignment sets str1 to reference the String object, “This is a Java
literal string”.

Because Java class instances are implicitly deallocated, there cannot be dangling references
in Java.

C# includes both the references of Java and the pointers of C++.

6.11.7. Evaluation

The problems of dangling pointers and garbage have already been discussed at length.

Pointers have been compared with the goto. The goto statement widens the range of
statements that can be executed next. Pointer variables widen the range of memory cells
that can be referenced by a variable. Perhaps the most damning statement about pointers
was made by Hoare (1973): “Their introduction into high-level languages has been a step
backward from which we may never recover.”

6.11.8. Implementation of Pointer and Reference Types
6.11.8.1. Representations of Pointers and References

Machine Representation
Typical Single values stored in memory cells
Intel 8086 Addresses have two parts, segment and offset.
IBM System/38 16-byte capability address contains security and permission

20-bit Virtual Address

16-bit Segment Address

16-bit Offset Address

.

Intel 8086 Segment and Offset Registers.

Programming Languages Data Types
CMSC 4023 Chapter 6

34

6.11.8.2. Solutions to the Dangling-Pointer Problem

Name Description
Tombstone Every heap-dynamic variable includes a special cell, called a

tombstone that is itself a pointer to the heap-dynamic
variable. The actual pointer variable points only at
tombstones and never to heap-dynamic variables. When a
heap-dynamic variable is deallocated, the tombstone remains
but is set to nil, indicating that the heap-dynamic variable
no longer exists. This approach prevents a pointer from ever
pointing to a deallocated variable. Any reference to any
pointer that points to a nil tombstone can be detected as
an error.

Lock-and-key Pointer values are represented as ordered pairs (key,
address), where the key is an integer value. Heap-dynamic
variables are represented as the storage for the variable plus
a header cell that stores an integer lock value. When a heap-
dynamic variable is allocated, a lock value is created and
placed both in the lock cell of the heap-dynamic variable and
in the key cell of the pointer that is specified in the call to new.
Every access to the dereferenced pointer compares the key
value of the pointer to the lock value in the heap-dynamic
variable. If they match, the access is legal; otherwise, the
access is treated as a run-time error. Any copies of the
pointer value to other pointers must copy the key value.
Therefore, any number of pointers can reference a give heap-
dynamic variable. When a heap-dynamic variable is
deallocated with dispose, its lock value is cleared to an illegal
lock value. Then, if a pointer other the one specified in the
dispose is dereferenced, its address value will still be intact,
but its key value will no longer match the lock, so the access
will not be allowed.

6.11.8.3. Heap Management

Single-Size Cells – Lisp: The simplest situation is when all allocation and deallocation is of
single-size cells. It is further simplified when every cell already contains a pointer. This is
the scenario of many implementations of LISP, where the problems of dynamic storage
allocation were first encountered on a large scale. All LISP programs and most LISP data
consist of cells in linked lists.

In a single-size allocation heaps, all available cells are linked together using the pointers
in the cells, forming a list of available space. Allocation is a simple matter of taking the
required number of cells from this list when they are needed. Deallocation is a much
more complex process. A heap-dynamic variable can be pointed to by more than one
pointer, making it difficult to determine when the variable is no longer useful to the
program. Simply because one pointer is disconnected from a cell obviously does not
make it garbage; there could be several other pointers still pointing to the cell.

Programming Languages Data Types
CMSC 4023 Chapter 6

35

Garbage collection
• Reference counters, in which reclamation is incremental and is done when

inaccessible cells are created.
• Mark-sweep, in which reclamation occurs only when the list of available space

becomes empty.
o First, all cells in the heap have their indicators set to indicate they are

garbage.
o The second part, called the marking phase, is the most difficulty. Every

pointer in the program is traced into the heap, and all reachable cells are
marked as not being garbage.

o The third phase, called the sweep phase, is executed. All cells in the heap
that have not been specifically marked as still being used are returned to
the list of available space.

• Incremental mark-sweep is similar to mark-sweep but garbage collection occurs
more frequently, long before memory is exhausted, making the process more
effective in terms of the amount of storage that is reclaimed. Also, the time
required for each run of the process is obviously sorter, thus reducing the delay
in application execution.

Variable-Size Cells – Most Programming Languages
• Because the cells are different sizes, scanning them is a problem. One solution is

to require each cell to have the cell size as the first field. Scanning can be
accomplished but requires slightly more storage and more time in comparison
with fixed sized cells.

• The marking process is challenging. How can a chain be followed from a pointer
if there is no predefined location for the pointer in the referenced cell? Cells that
contain no pointers are a problem. Adding an internal pointer to each cell, which
is maintained in the background by the run-time system, will work. However,
background maintenance adds space and execution time overhead.

• Maintaining the list of available space is another source of overhead. The list can
begin with a single cell consisting of all available space. Requests for segments
simply reduce the size of this block. Reclaimed cells are added to the list. The
problem is that before long, the list becomes a long list of various size segments,
or blocks. This slows allocation because requests casus the list to be searched for
sufficiently large blocks. Eventually, the list may consist of a large number of very
small blocks, which are not large enough for most requests. At this point,
adjacent blocks may need to be collapsed into larger blocks.

6.12. Type Checking
• Type checking is the activity of ensuring that operands of an operator are of compatible

types.
• A compatible type is one that either is legal for the operator or is allowed under language

rules to be implicitly converted by compiler-generated code (or the interpreter) to a legal
type.

• Automatic conversion is called coercion. For example, if an int variable and a float
variable are added in Java, the value of int variable is coerced to float and a floating-
point addition is performed.

Programming Languages Data Types
CMSC 4023 Chapter 6

36

• A type error is the application of an operator to an operand of an inappropriate type. For
example, in C++ is a variable having an array type is multiplied by a variable having a
struct type (a record), an compile-time error is produced.

• Static type checking: If all bindings of variables to types are static in a language, then type
checking can nearly always be done statically – during compilation.

• Dynamic type checking: Dynamic type binding requires type checking at run time, called
dynamic type checking. Some languages, such as JavaScript and PHP, because of their
dynamic type binding, allow only dynamic type checking. It is better to detect errors,
earlier, at compile time, because the sooner an error is found and corrected the less costly
it is to fix.

• Type checking is complicated when a language allows a memory cell to store values of
different types at different times during execution: Such memory cells can be created
with Ada variant records, C and C++ unions, and discriminated unions in ML, Haskell, and
F#. In these cases, type checking, if done, must be dynamic and requires the run-time
system to maintain the type of the current value of such memory cells. So, even though
all variables are statically bound to types in languages such a C++, not all type errors can
be detected by static type checking.

6.13. Strong Typing
The concept of structured programming was developed in the 1970s and with it the idea of strong
typing. A programming language is strongly typed if type errors are always detected. This
requires that the types of all operands can be determined, either at compile time or at run time.
The motivation to detect all type errors is to reduce the costliest part of program development –
the cost of testing.

Ada is nearly strongly types. It is only nearly strongly typed because it allows programmers to
breach the type-checking rules by specifically requesting that type checking be suspended for a
particular type conversion.

C and C++ are not strongly typed languages because both include union types, which are not
checked.

ML is strongly typed, even though the types of some function parameters may not be known at
compile time. F# is strongly typed.

Java and C#, although they are based on C++, are strongly typed in the same sense as Ada. Types
can be explicitly cast, which could result in a type error.

6.14. Type Equivalence
Two types are equivalent if an operand of one type in an expression is substituted for one of the
other type, without coercion. Type equivalence is a strict form of type compatibility –
compatibility without coercion.
Two approaches to defining type equivalence:

Name type equivalence means that two variables have equivalent types if they are defined
either in the same declaration or in declarations that use the same type name. Name type
equivalence is easy to implement but is more restrictive.

Ada:
type Indextype is 1..100;

Programming Languages Data Types
CMSC 4023 Chapter 6

37

count: Integer;
index: Indextype;

The types of the variables count and index would not be equivalent; count could not be
assigned to index or vice versa.

Structure type equivalence means that two variables have equivalent types if their types have
identical structures.

const RANK=100;
type

ivector = array[1..RANK] of integer;
var

IV: ivector;
OV: array[1..RANK] of integer;

Using structure type equivalence variables IV and OV are equivalent but under name type
equivalence they are not.

Under structure type equivalence, however, the entire structures of the two types must be
compared. This comparison is not always simple. For example, are two record types
equivalent if they have the same structure but different field names? Are two single-
dimensioned array types in a Fortran or Ada program equivalent if they have the same
element type but have subscript ranges of 0..10 and 1..11? Are two enumeration types
equivalent if they the same number components but spell the literals differently?

Another difficulty with structure type equivalence is that it disallows differentiating between
types with the same structure. For example, consider the following Ada-like declarations:

type Celsius = Float;
 Fahrenheit = Float;

The types of variables of the two types are considered equivalent under structure type
equivalence, allowing them to be missed in expressions, which is surely undesirable in this
case, considering the difference indicated by the type’s names.

A derived type is a new type that is based on some previously defined type with which it is
not equivalent, although it may have identical structure. Derived types inherit all the
properties of their parent types.

type Celcius is new Float;
type Fahrenheit is new Float;

The types of variables of these two derived types are not equivalent, although their structues
are identical. Furthermore, variables of both types are not type equivalent with any other
floating-point type.

Programming Languages Data Types
CMSC 4023 Chapter 6

38

An Ada subtype is a possibly range-constrained version of an existing type. A subtype is
equivalent with its parent type.

subtype Small_type is Integer range 0..99;

The type Small_type is equivalent to the type Integer.

type Derived_ Small _Int is new Integer range 1..100;
subtype Subrange_Small_Int is new Integer range 1..100;

Variables of both types have the same range of legal values and both inherit the operations
of Integer. However, variables of type Derived_Small_Int are not compatible with any Integer
type.

On the other hand, variables of type Subrange_Small_Int are compatible with variables and
constants of Integer type and any subtype of Integer.

Ada unconstrained array types:

type Vector is array (Integer range <>) of Integer;

Vector_1: Vector(1..10);
Vector_2:Vector(11..20);

The types of these two objects are equivalent, even though they have different subscript
ranges, because for objects of unconstrained array types, structure type equivalence rather
than name type equivalence is used. Because both types have 10 elements and the elements
of both are of type Integer, they are type equivalent.

Consider

A: array(1..10) of Integer;
B: array(1..10) of Integer;

Both A and B have anonymous types – types that have no unique name – but even though
the anonymous types are identical arrays A and B are not compatible. The elements of the
arrays are compatible but not the arrays themselves.

C, D: array(1..10) of Integer;

Arrays C and D are not equivalent because Ada treats the foregoing declaration as

C: array(1..10) of Integer;
D: array(1..10) of Integer;

Programming Languages Data Types
CMSC 4023 Chapter 6

39

To make the arrays equivalent, we must use the following declarations:

type List_10 is array (1..10) of Integer;
C, D: List_10;

6.15. Theory and Data Types
under construction

	𝑼={𝒖∈ℤ|𝟎≤𝒖≤,𝟐-𝒏.−𝟏,𝒏∈,𝟖,𝟏𝟔,𝟑𝟐,𝟔𝟒.}
	 An 8-bit whole number 𝒄 ranges from 𝟎≤𝒄≤,𝟐-𝟖.−𝟏 or 𝟎≤𝒄≤𝟐𝟓𝟓.
	 A 16-bit integer 𝒔 ranges from 𝟎≤𝒔≤,𝟐-𝟏𝟔.−𝟏 or 𝟎≤𝒔≤𝟔𝟓,𝟓𝟑𝟓.
	 A 32-bit integer 𝒊 ranges from 𝟎≤𝒊≤,𝟐-𝟑𝟐.−𝟏 or 𝟎≤𝒊≤𝟒,𝟐𝟗𝟒,𝟗𝟔𝟕,𝟐𝟗𝟔.
	 A 64-bit integer 𝒍 ranges from 𝟎≤𝒍≤,𝟐-𝟔𝟒.−𝟏.
	Integers and whole numbers. The relationship between integers and whole numbers for a given size is shown in Figure 1.
	Representation: Implementation: Integers are implemented as two’s complement binary integers. Whole numbers are implemented as unsigned binary integers. Several field widths (w) are common including 8, 16, and 32 bits.
	Output
	Output

