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5 Names, Bindings, Type Checking, and Scopes

Introduces fundamental semantic issues of variables including
Names and their attributes

Attributes include

Type

Address

Values

Aliases

Binding times

Scope

Lifetime

5.1 Introduction

Imperative programming languages are abstractions of the underlying von Neumann
computer architecture

A variable can be characterized by a collection of properties, or attributes, the most
important of which is type, a fundamental concept in programming languages.

5.2 Names

521

5.2.2

name and identifier are equivalent

Name Forms

Maximum length: 6 characters? 10 characters? 30 characters? 1000 characters?
Connector characters: Underscore _, Hyphen -, Space,
Case sensitive, as in C, C++, and Java: Is HashIndex is not equal to hashindex
First character,
= Perl, the first character must be one of §, @, or %, and these specify the
variable’s type
= |nRuby, @ or @@, indicate that the variable is an instance or a class variable,
respectively
= |nversions of Fortran prior to Fortran 90, names could have embedded spaces,
which were ignored. For example, the following two names were equivalent
Sum Of Salaries
SumOfSalaries

Special Words

keyword: special only in certain contexts. In FORTRAN, the declaration, REAL APPLE ,
REAL is special in that it defines the type of the variable declared. However, in the
statement REAL = 3.4, REAL is the name of a variable.

reserved word: A reserved word is always reserved and cannot have two meanings.
For example the identifier program is always a reserve word in Pascal.

predefined (standard): Standard types and functions are predefined in Pascal, Ada, and
Modula-2. It is possible to redefine the standard type integer.

type integer = ‘a’ .. ‘Z/;
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Variables

Variables are names for memory locations.
A variable can have up to six attributes

i name
ii address
i value
iv type
v lifetime
vi scope

Name

A name can identify a variable

A name can identify a type

A name can identify a class

A name can identify a label

A name can identify a constant

A name can identify a subprogram

Variables, types, classes, labels, constants, and subprograms are collectively called
entities.

Address

The address of a variable marks the first memory location assigned to that variable.
A character occupies one byte. Aninteger occupies two or more bytes. A real number
occupies four or more bytes.

On the left side of an assignment statement a variable is represented by its address.
The value stored in the variable is replaced by the expression on the right side of the
assignment operator. I-value refers to the address of a variable. r-value refers to the
actual value of the variable.

Alias

An alias is another name for a variable. References in C++ are one mechanism for
creating an alias.

int a=1;
int& b=a;
Aliases are considered dangerous by our author. {i € Integer | -2"* <i<2"* -1}

Type

Type determines the set of values that can be stored in a variable.
Examples:
Integer 1 ={z€Z|—2%"1<z<2%1-1}, wis the number of bits in a word.
Example: for a 16-bit word, I = {z € Z| — 21671 < z < 21671 — 1}
I={z€Z|-2¥<z<25-1}
I={z€eZ|—32,768 <z <32,767}
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Example: for a 32-bit word
I={zeZ|-21<z<231 -1}
I ={z€eZ|—-2147,483,648 < z < 2,147,483,647}

Boolean B = {0,1}
Real
R={-15%x2°?x1.F,s€{01},1 <c<254,b=127,F
23

= Z fie X 275, fi, €{0,1}
=1

5.3.4 Value

The value of a variable is the contents of the memory cell or cells associated with the
variable. The capacity or size of the cell depends on the type and the number of
elements defined by the type. Naturally, types having more elements require more
memory to represent a single value.

A variable’s value is sometimes called its r-value because it is what is required when
the variable is used on the right side of an assignment statement.

The value of a variable is a member of the set defined by its type.

A variable may occupy one or more memory cells.

A memory cell is the smallest group of bits (binary-digits) that can be addressed by
the underlying computer.

Usually a cell is a byte.

A byte in times past has been defined by the size required to represent a character.
Characters have been represented at various times by 5-bit Baudot, 6-bit fieldata, 7-
bit ASCII, 8-bit EBCDIC, 8-bit ASCII.

A cell on machines optimized for computation may be as large as 128 bits (Cray).

5.4 The Concept of Binding

binding is an association between an attribute and an entity
0 An example of an attribute is the type assigned to a variable
0 An example of an entity is a variable
binding time defines the time at which the binding is made
0 Example, in the C programming language, the type of a variable is bound at
compilation time
Consider the C++ declaration and statement.

int count;
count = count + 5;
The type assigned to variable count is defined at compile-time. Some types are not

defined at compile-time in C++. Pointers to virtual functions are not bound until
execution time.
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= The set of possible values for the type int is bound at compiler-design time, when the
target architecture is known.
= The meaning of the operator + is bound at design time when + is defined to be the
addition operator and further defined at compile time when the types of operands are
known.
0 For example if both operands are integer, then the + operator is defined to be
integer addition.
0 If one or both of the operands is a floating-point value then the + operator is
defined to be floating-point addition.
0 If one or both of the operands is a string, then the + operator is defined to be
concatenation.
0 In C+4, the + operator can be further defined by operator overloading.
= The internal representation of the integer literal 5 is bound at compiler design time
when the target computer is selected.
= The value of variable count is bound at execution time.

5.4.1 Binding of Attributes to Variables

= static bindings occur before execution-time
= dynamic bindings occur at execution-time

5.4.2 Type Bindings

= Avariable must have a type before it can be assigned a value. A variable must have
a type before it can be referenced in a program.

5.4.2.1 Static Type Binding

e An explicit declaration is a statement in a program that lists variable names and
specifies that they are a particular type.
e An implicit declaration is a means of associating variables with types through
default conventions, rather than declaration statements.
e Early languages — Fortran, BASIC — have implicit declarations
0 Fortran — An identifier than begins with one of the letters |, J, K, L, M, or N
is implicitly declared to be an integer; otherwise the variable has type real.
e Languages that depend on implicit declarations by means of the first letter are not
perfectly general in their rules for naming identifiers.
0 Perl, for example, requires that any name that begins with S is a scalar,
where a scalar is defined to be either a string or a numeric value.

If a name begins with @, it is an array
If it begins with a % it is a hash structure.

It is worth noting that @apple and %apple are different, @apple is an array
whereas %apple is a hash structure.
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5.4.2.2

5.4.23

Dynamic Type Binding
e Variable type is not defined by declarations.

e Variable type is not defined by the spelling of its name.
e Variable type is defined, at execution time, when the variable is assigned.

Example: JavaScript, PHP
list=[10.2,3.5];

Regardless of the previous type of the variable named list, this assignment causes it to
become a single-dimensioned array of length 2.

list=47;
Variable list becomes a scalar variable if the foregoing assighnment is executed directly
after the first example above.

Disadvantages:

1. Reliability: Programs are less reliable because errors related to type are
diminished compared to a language where types are defined statically.

2. Cost: The cost of implementing dynamic attribute binding is considerable,
particularly at execution time. Type-checking must be performed at execution
time every time a statement is executed. When type-checking is performed
during compilation, it is performed only once.

Type Inference

ML is a programming language that supports both functional and imperative
programming. Consider how an ML function is defined.

fun circumf(r) = 3.14159 * r *r;

Function circumf accepts a floating-point argument and produces a floating-point result.
Because the constant 3.14159 is floating-point value the type of both the operator *
and parameter r are inferred to be floating-point. Since, the expression 3.14159 * r *r
is floating-point the function circumf is inferred to have type floating-point.

fun times10(x) = 10 * x;

Because 10 is an integer constant its type is assigned to parameter x by inference and,
subsequently the expression type 10 * x is assigned to the function.

fun square(x) = x * x;

1. Parameter type, expression type, and function type are inferred from the
operator *.

2. Operator * accepts operands of type numeric.

3. By default, a numeric type is type int.

5
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4. Thus, parameter x, expression x * x, and function square all have type integer.
square(2.75);
causes an error because 2.75 is not an integer.
fun square(x) : real = x * x;
also causes an error because ML does not permit overloaded functions.
However,

fun square(x:real) = x * x;
fun square(x) =(x:real) * x;
fun square(x) = x * (x:real);

are all valid function definitions in ML.

5.4.2.4 Variable Declarations

= explicit declaration — var a: integer; int a; A variable is assigned a type in a
declaration before it is referenced.
= implicit declaration
0 Typeisimplicitly defined by the spelling of the variable name. Variable names
beginning with letters |, J, K, L, and M were implicitly assigned type integer in
FORTRAN programs.
0 Perl
= § - the variable is a scalar. A scalar variable is either a string or a
numeric variable.
= @ signifies the variable is an array.
= % means the variable is a hash structures

5.4.2.5 Dynamic Type Binding

= Types are bound at execution time. Types are defined when a variable is assigned.
list = [10.2, 3.5]

=  Variable list is bound to the type array[0..1] of real by the foregoing assignment
statement. Variable list could have any type prior to the assignment statement.
= Disadvantages of dynamic type binding
0 Error detection ability is diminished. Obviously the type compatibility rules
for the assignment operator are discarded in a language that permits
dynamic type binding. Compile time checking is deferred to run time. The
designer must perform run time checking. No assistance is provided for the
designer. The compiler has no rules to enforce.
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0 Dynamic binding is costly since all variable must include a type specifier at
run time.

5.4.3 Storage Bindings and Lifetime

Term Definition
Allocation The process by which a variable is assigned memory.
Deallocation The process by which memory assigned to a variable is returned

to the pool of available memory.

Lifetime The time that a variable is bound to specific memory.

There are four classes of storage binding for scalar variables including:
e static
e stack-dynamic
e explicit heap-dynamic
e implicit heap-dynamic

5.4.3.1 Static Variables

Static variables are bound to specific memory, (fixed memory locations), before program
execution begins and remains bound to that memory until program execution terminates.

In C++
staticint j;
static ostream o;

Advantages:
1. Convenience: It is convenient for a program or a subprogram to record state
information.

2. CEfficiency: All static variables can be addressed directly whereas other kinds of
variables are addressed indirectly as an offset from a register or relative to a larger
structure.

Disadvantage:

1. Reduced flexibility: A programming language, like FORTRAN, than has no other type

of storage allocation does not support recursion.
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5.4.3.2

Stack-Dynamic Variables

e Elaboration
0 The type of the variable is statically bound.
0 The address of the variable —the memory bound to the variable —is created
when the variable is declared.

double celsius(double f){return 5*(f-32)/9;}

int main()

{ double f[]={32,68,72,100,110};
for (int a=0;a<5;a++) cout << endl << celcius(fla]);
cout << endl;

return 0;
}
5.4.3.3 Explicit Heap-Dynamic Variables
int *j; //Create a pointer
i=new int; //Create an explicit heap-dynamic variable
*j=6;
delete j; //Reclaim storage
5.4.3.4 Implicit Heap-Dynamic Variables
JavaScript
highs = [74,84,86,90,71];
Implicit heap-dynamic variables are bound to heap storage only when they are assigned
values.
5.5 Scope

Term Definition

Scope The scope of a variable is the range of statements in which the
variable is visible.

Visible A variable is visible in a statement if it can be referenced in that
statement.

Nonlocal The nonlocal variables of a program unit or block are those that
are visible within the program unit or block but not declared
there.

5.5.1 Static Scope
Term Definition

Static scoping  Static scoping is so named because the scope of variable can be

statically determined —that is, prior to execution. Static scoping
permits a human reader and a compiler to determine the type of
every variable in the program. Static scoping is also called lexical
scoping.
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There are two categories of static-scoped languages:
e those in which subprograms can be nested, which creates nested static scopes,
for example Pascal and Ada
e and those which subprograms cannot be nested, for example C and C++

procedure Big is
X: Integer;
procedure Subl is
X: Integer;
begin — Sub1l

end; -- Subl
procedure Sub2 is
begin — Sub2
we X e
end; -- Sub2
begin - Big

end; -- Big
Static scope and subprograms

Example: Variable X in the program above is declared in two places: in procedure Big and in
procedure Subl. Variable X is referenced in only one place, in procedure Sub2. Since the scope of
variable X declared in procedure Subl is limited to that procedure, the variable X that is
referenced in procedure Sub2 is the variable X that is declared in procedure Big.

5.5.2 Blocks

e Blocks, introduced in Algol 60, allow a section of code to have its own local
variables.

e Blocks introduce a new namespace.

e Variables declared in a block are typically stack dynamic.

e The term block-structured language is derived from the presence of blocks in a
language.

if (list[i] < list[j]) {
int temp;
temp = list[i]; list[i1=list[j]; list[j]= temp;
}
Example block in C++
e |nthe example above, local variable temp is introduced for the sole purpose of
exchanging two integer values. The array list and its indexes i and j are declared in
enclosing blocks. This is an example of how blocks improve readability.
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5.5.3

void sub()
{ intcount=25;

for (int count=0;count<10;count++) {
cout >> count >> endl;

}

cout >> count>> endl;

Example variable count hidden by scope

e Inthe example above, local variable count, declared in function sub, is hidden from

local variable count, defined as a loop variable in the for-loop.
e The example above is illegal in Java and C#. The designers of Java and C# believed
that the reuse of names in nested blocks was too error prone to be allowed.

Declaration Order

e Data declarations must appear at the beginning of a function except those in nested
blocks in C89. Standard Pascal limited the location of data declarations to a var-
clause that can only appear directly after a subprogram declaration.

e (99, C++, Java, and C# permit a data declaration anywhere that a statement can
appear but still before the variable is referenced.

e |n C99, C++, and Java the scope of a variable extends from its declaration to the end
of the block in which it was declared.

e |n CH, the scope of any variable declared in a block is the whole block, regardless of
the position of the declaration in the block, and as long as it is not in a nested block.
Note that C# still requires that all variables be declared before they are used.
void fun()

{..

for (int count=0;count<10;count++) {

}

Scope of loop variables

e In early versions of C++, the scope of such a variable was from its definition to the
end of the smallest enclosing block.

e Inthe standard version of C++, the scope is restricted to the for-construct.

e Java and C# also restrict the scope to the for-construct.

10
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5.5.4 Global Scope
static int global; //A file-global variable
void funi()

{ ..
global=1;

}

int main()

{

cout << end| << global << endl;
return 0;
File global variable

e static specifies the storage class static meaning only one storage location is
allocated for variable global and the lifetime of the variable begins when function
main is invoked and ends when main returns control to the operating system.

e Storage is allocated in this compilation unit.

e static also specifies that the name is local to the file and inhibits passing the name
global to the linkage editor. Variable global cannot be referenced by any other
compilation unit in program.
int global; //A global variable
void funi()

{ ..
global=1;

}

int main()

{
cout << endl << global << endl;
return 0;

Global variable

e The absence of the static declaration permits the variable name to be passed on to
the linkage editor where it is made available to other compilation units.
e Storage is allocated in this compilation unit.

11
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static void funi()

{ ..
global=1;

}

int main()

{ ..
cout << endl << global << endl;
return 0;

}

A local function

Function funl is made local to this compilation unit only by the use of the static
declaration.

extern int global; //A global variable reference

void funi()

{ ..
global=1;

}

int main()

{

cout << endl << global << endl;
return 0;
Referencing a global variable
Integer variable global is declared in another compilation unit. Storage is allocated
for variable global in the compilation unit where it was declared.
A declaration

int global;
would make variable global declared in another compilation unit inaccessible.

5.5.5 Evaluation of Static Scoping

Static scoping provides a method of nonlocal access that works well in many situations.
However, it is not without problems.

Static scoping permits more access to both variables and subprograms than is
necessary or desirable.
The hierarchical nature of static scoping does not support the needs of more
specifically managed scopes for software development and maintenance. An ever
increasing visibility for more and more variables is not conducive to good program
structure.
Encapsulation, as enabled by object-oriented design has proven to be a more
effective development tool.

12
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5.5.6 Dynamic Scope

5.5.7

Dynamic scoping is based on the calling sequence of subprograms, not on their
spatial relationship to each other. Scope can be determined only at runtime.
procedure Big is
X: Integer;
procedure Subl is
X: Integer;
begin — Subl

end; -- Sub1l
procedure Sub2 is
begin — Sub2
e X e
end; -- Sub2
begin — Big
Subi;

end; -- Big
Dynamic scope and subprograms

Assume that Big calls Sub1 which, in turn, calls Sub2. Unlike static scoping rules, the
reference to variable X in Sub2 resolves to the X declared in Sub1l. A reference to a
variable is resolved in nearest activation record having an allocation for a variable of
the given name.

Evaluation of Dynamic Scoping

Dynamic scoping has several problems.

Local variables are visible and can be accessed by all subprograms that are still
active. There is no way to protect local variables from this accessibility.

It impossible to ensure that nonlocal variables satisfy type rules. For example, a
nonlocal integer variable of a certain name could be appear acceptably in an
expression whereas a nonlocal character string variable would cause a run-time
error because the expression was invalid for that type.

Dynamic scope makes programs much more difficult to read because the calling
sequence of sub programs must be known to determine the meaning of references
to nonlocal variables. This task can be virtually impossible for a human reader.
Accesses to nonlocal variables in dynamic-scoped languages take far longer than
accesses to nonlocals when static scoping is used.

Dynamic scoping permits variables to be used as parameters because they are implicitly
visible in the called subprogram.

13
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5.6 Scope and Lifetime

int Count(void) { static int c=0; return c++;}

int main()

{ for (int a=0;0<5;a++) cout << endl << “Count=" << Count();
cout << endl;
return 0;

Scope and lifetime

e The scope of local variable c is limited to function Count but its lifetime is the same
as the lifetime of function main.
void printheader ()

{

}

void compute()

{ intsum;
printheader();

}

Dynamic scope and subprograms

e The scope of local variable sum is limited to function compute but its lifetime
extends over the time during which function printheader executes.

14



Programming Languages Names, Bindings, Type Checking and Scopes
Chapter 5

CMSC 4023

5.7 Referencing Environments
The referencing environment of a statement is the collection of all variables that are
visible in the statement.
procedure Example is
A,B:Integer;

procedure Subl is
X,Y:Integer;
begin — Subl
ves Smmmmmmmmmmeeeeen 1
end; -- Subl
procedure Sub2 is
X:Integer;

procedure Sub3 is
X:Integer;

begin — Sub3
ven Smmmmmmmmemeee 2
end; -- Sub3
begin — Sub2
B ——— 3
end; -- Sub2
begin -- Example
we < 4

end; -- Example
Static referencing environment

15
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void subi()

{ inta,b;
. < 1

}

void sub2()

{intb,c;
w. < 2
subl();

}

int main()

{ intcd;
v < 3
sub2();
return 0;

}

Point Referencing Environment
1 a and b of subl, c of sub2, d of main, (c of main and b of sub2 are hidden)
2 b and c of sub2, d of main, (c of main is hidden)
3 c and d of main
5.8 Named Constants

A named constant is a variable that is bound to a value only once.
Named constants improve readability

void example()

{ int[] intList=new int[100];
Stringl[] strList=new String[100];
double average,sum;
for (int 0=0;0<100;a++){...}
for (int 0=0;a<100;a++){...}

average=sum/100;

Without named constants

16
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void example()

{ finalint/en=100;
int[] intList=new int[/en];
String[] strList=new String[len];
double average,sum;

for (int a=0;a<len;a++){...}
for (int a=0;a<len;a++){...}
average=sum/len;

With named constants

enum Season {spring,summer,autumn,winter};
With named constants

e Ada and C++ allow dynamic binding of values to named constants. For example,
const int result=2*width+1;

e The value of the variable width must be visible when result is allocated and bound
to its value.

17



	5 Names, Bindings, Type Checking, and Scopes
	5.1 Introduction
	5.2 Names
	5.2.1 Name Forms
	5.2.2 Special Words

	5.3 Variables
	5.3.1 Name
	5.3.2 Address
	Alias

	5.3.3 Type
	5.3.4 Value

	5.4 The Concept of Binding
	5.4.1 Binding of Attributes to Variables
	5.4.2 Type Bindings
	5.4.2.1 Static Type Binding
	5.4.2.2 Dynamic Type Binding
	5.4.2.3 Type Inference
	5.4.2.4 Variable Declarations
	5.4.2.5 Dynamic Type Binding

	5.4.3 Storage Bindings and Lifetime
	5.4.3.1 Static Variables
	5.4.3.2 Stack-Dynamic Variables
	5.4.3.3 Explicit Heap-Dynamic Variables
	5.4.3.4 Implicit Heap-Dynamic Variables


	5.5 Scope
	5.5.1 Static Scope
	5.5.2 Blocks

	}
	5.5.3 Declaration Order
	5.5.4 Global Scope
	5.5.5 Evaluation of Static Scoping
	5.5.6 Dynamic Scope
	5.5.7 Evaluation of Dynamic Scoping

	5.6 Scope and Lifetime
	5.7 Referencing Environments
	5.8 Named Constants


