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3 Describing Syntax and Semantics 

3.1 Introduction 

 syntax – expressions, statements, program units 
 semantics – meaning 

3.2 The General Problem of Describing Syntax 
 alphabet 
 strings from the alphabet 
 sentences composed of strings 
 lexemes or tokens Lexemes are described separately from the grammar of the 

language.  Lexemes are identifiers, literals, punctuation 
 tokens are represented as a pair 

o the string recognized 
o a unique integer code often expressed symbolically as an enumeration 

constant 
 

Example 
 
statement index = 2 * count + 17; 
 
Lexeme Token(integer code) 
index  ID(1) 
=   ASSIGN(2) 
2 INTLIT(3) 
*   STAR(4) 
count ID(1) 
+   PLUS(5) 
17 INTLIT(3) 
;   SEMICOLON(6) 

3.2.1 Language Recognizers 
 Language can be formally defined in two distinct ways: 

1) recognition 
2) generation 

3.2.2 Language Generators 
 A Language Generator is a device that can be used to generate sentences in a 

language.  Recall that a sentence in a programming language is a program. 
 Perhaps a language generator could be an aid to testing an implementation of a 

language but has little use in other areas. 
 A language generator is interesting because programming language grammars can be 

used both to recognize and generate sentences in the grammar of a programming 
language. 
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3.3 Formal Methods of Describing Syntax 

3.3.1 Backus-Naur Form and Context-Free Grammars 

3.3.1.1 Context-free Grammars 
 Chomsky defined four classes of grammars.  Two of these classes are context-free 

and regular. 
 Tokens can be described by regular expressions 
 The syntax of most programming languages can be described by context-free 

grammars. 

3.3.1.2 Origins of Backus-Naur Form 
 ALGOL 58 
 ACM-GAMM Conference 1959 John Backus 
 Later modified by Peter Naur.  Backus-Naur Form 

3.3.1.3 Fundamentals 
Metalanguage 

A metalanguage is employed to describe the grammar of a programming language.  A 
metalanguage contains four attributes as described below. 

Context-free grammars 
1. Terminals are the basic symbols from which strings are formed.  The token is a 

synonym for “terminal” when we are talking about grammars for programming 
languages.  Terminal strings are presented in bold.  Terminal strings include 
reserve words if, then, else, while. 

2. Nonterminals are syntactic variables the denote sets of strings.  Example. 
statement →if expression then statement else statement 
<statement> → if <expression> then <statement> else <statement> 

3. In a grammar, one nonterminal is distinguished as the start symbol, and the set 
of strings it denotes is the language defined by the grammar. 

4. The productions of a grammar specify the manner in which the terminals and 
nonterminals can be combined to form strings.  Each production consists of a 
nonterminal, followed by an arrow (sometimes the symbol ::= is used in place 
of the arrow), followed by a string of nonterminals and terminals. 

3.3.1.4 Describing Lists 
identifier-list →id 
identifier-list →id, identifier-list 
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3.3.1.5 Grammars and Derivations 
Id LHS  RHS 
1 program → begin statement-list end 
2 statement-list → statement 
3 statement-list → statement ; statement-list 
4 statement → var = expression 
5 var → A  
6 var → B 
7 var → C 
8 expression → var + var 
9 expression → var – var 

10 expression → var 
 
Consider a sentence, a program, in the grammar given above. 
begin A = B + C ; B = C  end 
 
A sentence in the grammar consists solely of terminal symbols.  A derivation starts with 
the distinguished symbol and proceeds by substituting productions of the grammar for 
nonterminals to derive the sentence. 

 
 
 

Sentential form  
(rightmost derivation) 

Id LHS  RHS 

program  Start with the start symbol 
begin statement-list end 1 program → begin statement-list 

end 
begin statement ; statement-list 
end 

3 statement-
list 

→ statement ; statement-
list 

begin statement ; statement end 2 statement-
list 

→ statement 

begin statement ; var = expression 
end 

4 statement → var = expression 

begin statement ; var = var end 10 expression → var 
begin statement ; var = C end 7 var → C 
begin statement ; B = C end 6 var → B 
begin var = expression ; B = C end 4 statement → var = expression 
begin var = var + var ; B = C end 8 expression → var + var 
begin var = var + C ; B = C end 7 var → C 
begin var = B + C ; B = C end 6 var → B 
begin A = B + C ; B = C end 5 var → A  
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3.3.1.6 Parse Trees 
Id LHS  RHS 
1 assignment → id = expression 
2 id → A 
3 id → B 
4 id → C 
5 expression → id + expression 
6 expression → id * expression 
7 expression → ( expression ) 
8 expression → id 

 
Sentential form  
(leftmost derivation) 

Id LHS  RHS 

assignment  Start with the start symbol 
id = expression 1 assignment → id = expression 
A = expression 2 id → A 
A = id * expression 6 expression → id * expression 
A = B * expression 3 id → B 
A = B * ( expression ) 7 expression → ( expression ) 
A = B * (id + expression) 5 expression → id + expression 
A = B * (A + expression) 2 id → A 
A = B * (A + id) 8 expression → id 
A = B * (A + C) 4 id → C 

 

expression

expression

expression

expression

assignment

id

id

id

id

+

A

C

( )

*

=

A

B

 
Figure 3.1 Parse Tree for the statement A=B*(A+C) 
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3.3.1.7 Ambiguity 
Definition A grammar that generates a sentential form for which there are two 

or more distinct parse trees is said to be ambiguous. 
 
The following grammar is ambiguous. 

Id LHS  RHS 
1 assignment → id = expression 
2 id → A 
3 id → B 
4 id → C 
5 expression → expression + expression 
6 expression → expression * expression 
7 expression → ( expression ) 
8 expression → id 

 
Consider the two parse trees for the sentence 
A=B+C*A 

assignment

expression

expressionexpression

expression expression

id

id

id id

=

+

+

A

B

C A  
Figure 3.2.1 Parse Tree 1 for the sentence A=B+C+A 
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Figure 3.2.2 Parse Tree 2 for the sentence A=B+C+A 
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3.3.1.8 Operator Precedence 
Definition Operator precedence specifies the order of execution for different 

operators in an expression. 
 
Example: The following unambiguous grammar specifies the normal order in which 
operators are evaluated in arithmetic expressions. 

Id LHS  RHS 
1 assignment → id = expression 
2 id → A 
3 id → B 
4 id → C 
5 expression → term 
6 expression → expression + term 
7 term → factor 
8 term → term * factor 
9 factor → ( expression ) 

10 factor → id 
 

Operator Precedence Associativity 
() 4 (Highest)  
* 3 left 
+ 2 left 
= 1  

 
Sentential form  
(leftmost derivation) 

Id LHS  RHS 

assignment  Start with the start symbol 
id = expression 1 assignment → id = expression 
A = expression 2 id → A 
A = expression + term 6 expression → expression + term 
A = term + term 5 expression → term 
A = factor + term 7 term → factor 
A = id + term 10 factor → id 
A = B + term 3 id → B 
A = B + term * factor 8 term → term * factor 
A = B + factor * factor 7 term → factor 
A = B + id * factor 10 factor → id 
A = B + C * factor 4 id → C 
A = B + C * id 10 factor → id 
A = B + C * A 2 id → A 
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Figure 3.3 Unique parse tree for A=B+C*A using an unambiguous grammar 

 

3.3.1.9 Associativity of Operators 
Definition Associativity defines the order of operations in an expression when 

operators have the same precedence. 
 
Example: A=B+C+A 
There are two operations in the expression B+C+A.  Since both operations are addition, 
they have the same precedence.  Which addition is performed first?  Is the sum of B+C 
computed first and then the value of A added to the sum.  Or, alternatively, is the sum 
of C+A found first followed by adding B to the sum of C+A? 
 
The grammar defines the order in which operations are performed.  An operator can 
left-associative or right-associative.  If an operator is left-associative then operations are 
performed left to right.  If an operator is right-associative, operations are performed 
right to left. 
 
Consider the excerpt from the C++ grammar for additive expressions. 
   

Id LHS  RHS 
 additive-expression → multiplicative-expression 
 additive-expression → additive-expression + multiplicative-expression 
 additive-expression → additive-expression - multiplicative-expression 
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Addition operators, + and -, associative to the left because the recursive nonterminal 
symbol, additive-expression, appears leftmost on the right hand side of the production. 
 
Consider the following grammar and a sentence in the grammar A=B+C+A 

Id LHS  RHS 
 assignment → id = expression 
 id → A 
 id → B 
 id → C 
 expression → expression + primary 
 expression → expression - primary 
 primary → id 
 primary → ( expression ) 

 

 
Figure 3.4 A Parse Tree for A=B+C+A that illustrate a left-associative operator 
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In a similar way, assignment-expressions are right-associative. 
 

Id LHS  RHS 
 assignment-expression → conditional-expression 
 assignment-expression → logical-or-expression assignment-operator 

assignment-expression 
 assignment-expression → throw-expression 
    
 assignment-operator → = 
 assignment-operator → *= 
 assignment-operator → /= 
 assignment-operator → = 
 assignment-operator → %= 
 assignment-operator → += 
 assignment-operator → -= 
 assignment-operator → >>= 
 assignment-operator → <<= 
 assignment-operator → &= 
 assignment-operator → ^= 
 assignment-operator → |= 

 
Note that the recursive nonterminal assignment-expression appears rightmost on the 
right hand side of the highlighted production. 
 
Consider the statement A=B=C=A+3 
and the grammar 

Id LHS  RHS 
 assignment → expression = assignment 
 assignment → expression 
 expression → expression + primary 
 expression → primary 
 primary → ( expression ) 
 primary  INTLIT 
 primary → ID 

 



Programming Languages  Describing Syntax and Semantics 
CMSC 4023  Chapter 3 
  

 11 

assignment

assignment=expression

expression = assignment

expression

expression

expression

= assignment

primary

primary

primary

primary

primary

ID(A)

ID(B)

ID(C)

ID(A)

INTLIT(3)

+

 
Figure 3.4 A Parse Tree for A=B=C=A+3 that illustrate a right-associative operator 

 

3.3.1.10 An Unambiguous Grammar of if-then-else 
Id LHS  RHS 
 if-statement → if expression then statement 
 if-statement → if expression then statement else statement 

 
if done = true 

then if denom = 0 
then quotient := 0; 
else quotient := num div denom; 

 
Id LHS  RHS 
 statement  matched-statement 
 statement  unmatched-statement 
 matched-statement  if expression then matched-statement else 

unmatched-statement 
 matched-statement  any-non-if-statement 
 unmatched-statement  if expression then statement 
 unmatched-statement  if expression then matched-statement else 

unmatched-statement 
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3.3.2 Extended BNF 
Extended BNF or EBNF has three additions not included in BNF. 

1. Braces [] designate optional suffixes 
Example BNF: 

if-statement → if ( expression ) statement 
if-statement → if ( expression ) statement else statement 

 
Equivalent EBNF: 

if-statement → if ( expression ) statement [ else statement ] 

Note that the braces are not printed in bold to distinguish them from terminal 
symbols which are printed in bold. 

 
2. Brackets {} specify that a suffix is repeated zero or more times 

Example BNF: 
identifier-list → identifier 
identifier-list → identifier-list , identifier 

 
Equivalent EBNF: 

identifier-list → identifier { , identifier} 

Note that the brackets are not printed in bold to distinguish them from terminal 
symbols which are printed in bold. 

 
3. Parentheses () indicate that one of the items enclosed in the parentheses must 

be selected. 
Example BNF: 

term → term * factor 
term → term / factor 
term → term % factor 

 
Equivalent EBNF: 

term → term {(*|/|%) term} 

Note that the parentheses are not printed in bold to distinguish them from 
terminal symbols which are printed in bold. 
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BNF: 
expression → term  
expression → expression + term  
expression → expression - term 
term → factor  
term → term * factor 
term → term / factor 
factor → id 
factor → ( expression ) 

 
EBNF: 

expression → term {(+|-) term} 
term → factor {(*|/|-) factor} 
factor → id | ( expression ) 

 

3.3.2.1 Syntax Graphs 
for-statement → for variable := initial-expression to final-expression do statement 

 
for-statement

initial-expressionvariableFOR :=

TO

statement DO final-expression  
Syntax Graph for a for-statement 

3.3.3 Grammars and Recognizers 
 Given a context free grammar a recognizer can be implemented.   
 A recognizer is a parser or a syntax analyzer, the second phase of a compiler. 

3.4 Attribute Grammars 
 An attribute grammar can be used to amplify a context free grammar to include 

semantic information. 

3.4.1 Static Semantics 
 Any form of static analysis is analysis performed at compile-time – during compilation. 
 Dynamic analysis, in contrast to static analysis, is performed during execution. 
 Static semantics refers to those semantics that can be performed during compilation. 
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3.4.2 Basic Concepts 
 Attribute grammars are context-free grammars to which have been added attributes, 

attribute computation functions, and predicate functions. 
 Attributes, which are associated with grammar symbols, terminal and nonterminal, are 

similar to variables in the sense that they can have values assigned to them. 
 Attribute computation functions, sometimes called semantic functions, are associated 

with grammar rules. 
 Predicate functions, which state the static semantic rules of the language, are 

associated with grammar rules. 

3.4.3 Attribute Grammars Defined 
 Associated with each grammar symbol 𝑋𝑋 is a set of attributes 𝐴𝐴(𝑋𝑋). The set 𝐴𝐴(𝑋𝑋) 

consists of two disjoint sets 𝑆𝑆(𝑋𝑋) and 𝐼𝐼(𝑋𝑋), called synthesized and inherited attributes. 

3.4.4 Synthesized Attributes 
Synthesized Attributes. Given a production rule 𝑋𝑋0 → 𝑋𝑋1⋯𝑋𝑋𝑛𝑛, synthesized attributes of 
𝑋𝑋0 can be computed using a function 𝑆𝑆(𝑋𝑋0) = 𝑓𝑓�𝐴𝐴(𝑋𝑋1)⋯𝐴𝐴(𝑋𝑋𝑛𝑛)�. 

Example: 
Production Rule Semantic Rule 
𝐿𝐿 → 𝐸𝐸 𝐧𝐧  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣)  
𝐸𝐸 → 𝐸𝐸1 + 𝑇𝑇  𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝐸𝐸1. 𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣  
𝐸𝐸 → 𝑇𝑇  𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣  
𝑇𝑇 → 𝑇𝑇1 ∗ 𝐹𝐹  𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝑇𝑇1.𝑣𝑣𝑣𝑣𝑣𝑣 × 𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣  
𝑇𝑇 → 𝐹𝐹  𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣  
𝐹𝐹 → ( 𝐸𝐸 )  𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣: = 𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣  
𝐹𝐹 → 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝  𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

Notes: 
1. In the production, 𝐿𝐿 → 𝐸𝐸 𝐧𝐧, the 𝐧𝐧 represents a newline character. 
2. Members of the grammar symbols are the synthesized attributes.  For example, 

member 𝑣𝑣𝑣𝑣𝑣𝑣 is a synthesized attribute of grammar symbol 𝐸𝐸. 
 

T.val=15

E.val=19

E.val=15 T.val=4

T.val=3

digit.lexval=3

digit.lexval=5

digit.lexval=4

F.val=3

F.val=5

F.val=4

L

n

+

*

 
Annotated parse tree for 3*5+4 n 
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3.4.5 Inherited Attributes 
Inherited Attributes. Given a production rule 𝑋𝑋0 → 𝑋𝑋1⋯𝑋𝑋𝑗𝑗 ⋯𝑋𝑋𝑛𝑛, inherited attributes of 
𝑋𝑋𝑗𝑗 can be computed using a function 𝐼𝐼�𝑋𝑋𝑗𝑗� = 𝑓𝑓�𝐴𝐴(𝑋𝑋1)⋯𝐴𝐴(𝑋𝑋𝑛𝑛)� where 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛 

Example: 
Production Rule Semantic Rule 
𝐷𝐷 → 𝑇𝑇 𝐿𝐿  𝐿𝐿. 𝑖𝑖𝑖𝑖 ≔ 𝑇𝑇. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
𝑇𝑇 → 𝐢𝐢𝐢𝐢𝐢𝐢  𝑇𝑇. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≔ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
𝑇𝑇 → 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫  𝑇𝑇. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
𝐿𝐿 → 𝐿𝐿1 , 𝐢𝐢𝐢𝐢  𝐿𝐿1. 𝑖𝑖𝑖𝑖 ≔ 𝐿𝐿. 𝑖𝑖𝑖𝑖  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐢𝐢𝐢𝐢. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐿𝐿. 𝑖𝑖𝑖𝑖)  
𝐿𝐿 → 𝐢𝐢𝐢𝐢  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐢𝐢𝐢𝐢. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐿𝐿. 𝑖𝑖𝑖𝑖)  

 
 
 

id1

id2

id3

L.in=real

L.in=real

L.in=real

D

T.type=real

real

,

,

 
Parse tree with inherited attribute in at each node labeled L. 
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3.5 Describing the Meanings of Programs: Dynamic Semantics 
 Dynamic semantics are used to specify the meaning of expressions, statements, and 

program units of a programming language. 
 Describing syntax is relatively easy – describing semantics is more difficult because 

o There is no universally accepted notation for dynamic semantics. 
o Imprecise English descriptions are often used. 
o Semantics are implemented in the compiler translating the language and 

different compilers may implement a language differently even if the same 
machine is targeted. 

3.5.1 Operational Semantics 
 Operational semantics are used to describe the meaning of a statement or program by 

specifying the effects of running it on a machine. 

3.5.1.1 The Basic Process 
 Example 

C Statement Meaning 
for (expr1; expr2; expr3) statement; expr1; 

loop:  if expr2 == 0 goto out 
  statement; 
  expr3; 
  goto loop; 
out: 

 Programming language constructs are defined in terms of virtual machine primitives.   
 The virtual machine is a precise definition of a machine that has no real existence. 

 

3.5.1.2 Evaluation 
 PL/I was the first language to employ formal operational semantics.  IBM named the 

semantic definition language the Vienna Definition Language (VDL). 
 

3.5.2 Denotational Semantics 
 Denotational semantics is the most rigorous and most widely known method for 

describing the meaning of programs. 
 Define a mathematical object for each programming language entity. 
 Define a mathematical function that maps instances of each language entity to its 

mathematical object. 
 The domain of the mathematical functions for a denotational semantics programming 

language specification is called the syntactic domain. 
 The range of the mathematical functions for a denotational semantics programming 

language specification is called the semantic domain. 
 In operational semantics, programming language constructs are translated into 

simpler programming constructs, which become the basis of the meaning of the 
construct. 

 In denotational semantics, programming language constructs are mapped to 
mathematical objects, either sets or, more often, functions.  However, unlike 
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operational semantics, denotational semantics does not model the step-by-step 
computational processing of programs. 

3.5.2.1 Two Simple Examples 
binary-number → ‘0’ 
binary-number → ‘1’ 
binary-number → binary-number ‘0’ 
binary-number → binary-number ‘1’ 

 
6

binary-number

3
binary-number

1
binary-number

‘1’

‘1’

‘0’

 
Parse Tree of the Binary Number 110 

 
 The semantic function 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏, maps the syntactic objects, as described in the previous 

grammar rules, to the objects in 𝑁𝑁, the set of non-negative decimal numbers. 
 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(′0′) = 0 
𝑀𝑀𝑏𝑏𝑖𝑖𝑛𝑛(′1′) = 1 

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ′0′) = 2 × 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ′1′) = 2 × 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) + 1 

 
 

3.5.2.2 The State of a Program 
 Denotational semantics employs the state of the program to describe meaning.   
 The state of the program is a set of ordered pairs, 

𝑠𝑠 = {< 𝑖𝑖1.𝑣𝑣1 >, < 𝑖𝑖2.𝑣𝑣2 >,⋯ , < 𝑖𝑖𝑛𝑛.𝑣𝑣𝑛𝑛 >} 
 Each 𝑖𝑖 is the name of a variable. 
 Each corresponding 𝑣𝑣 is the current value of the variable. 
 In contrast operational semantics are defined in terms of the state changes on an 

ideal computer. 
 The value of VARMAP(𝑖𝑖𝑗𝑗, 𝑠𝑠) is 𝑣𝑣𝑗𝑗, the value paired with 𝑖𝑖𝑗𝑗 in state 𝑠𝑠. 

 
  



Programming Languages  Describing Syntax and Semantics 
CMSC 4023  Chapter 3 
  

 18 

3.5.2.3 Expressions 
 Consider the expression grammar below. 

expression → decimal-number 
expression → variable 
expression → binary-expression 
binary-expression → left-expression operator right-expression 
left-expression → decimal-number 
left-expression → variable 
right-expression → decimal-number 
right-expression → variable 
operator → + 
operator → - 

 The mapping function for a given expression 𝐸𝐸 and a state 𝑠𝑠. 
o The symbol ∆= is used to define mathematical functions. 
o The symbol => is used in the following definitions to connect the form of an 

operand with its associated case (or switch) construct. 
o Dot notation is used to refer to the child nodes of a node.  For example, 

<binary_expr>.<left_expr> refers to the left child node of the <binary_expr>. 
 
𝑀𝑀𝑒𝑒(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑠𝑠)∆= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐨𝐨𝐨𝐨  

decimal-number  => 𝑀𝑀𝑒𝑒(decimal-number,s) 
variable   => 𝐢𝐢𝐢𝐢 𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕(variable,s)==undef 

then error 
else 𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕(variable,s) 

decimal-number  => 
if  (𝑀𝑀𝑒𝑒(binary-expression.left-expression,s)==undef  
OR 𝑀𝑀𝑒𝑒(binary-expression.right-expression,s) ==undef) 

then error 
else if (binary-expression.operator==’+’) 

then  𝑀𝑀𝑒𝑒(binary-expression.left-expression,s)  
 + 𝑀𝑀𝑒𝑒(binary-expression.right-expression,s) 
else   𝑀𝑀𝑒𝑒(binary-expression.left-expression,s)  
 - 𝑀𝑀𝑒𝑒(binary-expression.right-expression,s) 
 

3.5.2.4 Assignment Statements 
𝑀𝑀𝑎𝑎 (𝑥𝑥 = 𝐸𝐸, 𝑠𝑠)∆=if 𝑀𝑀𝑒𝑒(𝐸𝐸, 𝑠𝑠)== error 

then error 
else 𝑠𝑠′ = {< 𝑖𝑖1,𝑣𝑣1′ >, < 𝑖𝑖2, 𝑣𝑣2′ >,⋯ , < 𝑖𝑖𝑛𝑛,𝑣𝑣𝑛𝑛′ >}, where 

for 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛 
if 𝑖𝑖𝑗𝑗 == 𝑥𝑥 

then 𝑣𝑣𝑗𝑗′ = 𝑀𝑀𝑒𝑒(𝐸𝐸, 𝑠𝑠) 
else 𝑣𝑣𝑗𝑗′ =VARMAP(𝑖𝑖𝑗𝑗 , 𝑠𝑠) 

3.5.2.5 Logical Pretest Loops 
𝑀𝑀𝑙𝑙 (while 𝐵𝐵 do 𝐿𝐿, 𝑠𝑠)∆= if 𝑀𝑀𝑏𝑏(𝐵𝐵, 𝑠𝑠)==undef 

then error 
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else if 𝑀𝑀𝑏𝑏(𝐵𝐵, 𝑠𝑠)==false 
then 𝑠𝑠 
else if 𝑀𝑀𝑠𝑠𝑠𝑠(𝐿𝐿, 𝑠𝑠)==error 

then error 
else 𝑀𝑀𝑙𝑙 (while 𝐵𝐵 do 𝐿𝐿,𝑀𝑀𝑠𝑠𝑠𝑠(𝐿𝐿, 𝑠𝑠)) 

 
 

3.5.2.6 Evaluation 
 When the description of a language construct employing denotational semantics proves 

to be difficult, it can be a sign that the construct is ill-conceived. 
 The complexity of denotational descriptions makes them of little use to language users. 
 Other than PL/I our text mentions no programming languages where denotational 

semantics were employed. 
 

3.5.3 Axiomatic Semantics 
 Axiomatic semantics are based on mathematical logic. 
 The primary use of axiomatic semantics is to prove that program fragments function 

according to specification – program verification.  This is called program proof of 
correctness. 

3.5.3.1 Assertions 
 Logical expressions used in axiomatic semantics are called predicates or assertions. 
 Assertions are used to define the precondition and the postcondition of a statement. 

Example postcondition (enclosed in braces} 
{𝑥𝑥 ≥ 0}sum=2*x+1; {sum≥1} 

3.5.3.2 Weakest Preconditions 
 The weakest precondition is the least restrictive precondition that will guarantee the 

validity of the associated postcondition. 
Example preconditions for the postcondition {sum>1} 

o {x>0} sum=2*x+1; {sum>1} 
o {x>10} sum=2*x+1; {sum>1} 
o {x>50} sum=2*x+1; {sum>1} 
o {x>1000} sum=2*x+1; {sum>1} 

The weakest precondition that will guarantee the postcondition is {x>0}. 
 
An inference rule is a method of inferring the truth of one assertion on the basis of the 
values of other assertions. 
 

𝑆𝑆1, 𝑆𝑆2,⋯ , 𝑆𝑆𝑆𝑆
𝑆𝑆

 

This rule states that if 𝑆𝑆1, 𝑆𝑆2,⋯,  and 𝑆𝑆𝑆𝑆 are true, then the truth of 𝑆𝑆 can be inferred. 
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3.5.3.3 Assignment Statements 
 Let 𝑥𝑥 = 𝐸𝐸 be a general assignment statement and 𝑄𝑄 be its postcondition.  The 

precondition, 𝑃𝑃, is defined by the axiom. 
𝑃𝑃 = 𝑄𝑄𝑥𝑥→𝐸𝐸 

which means that 𝑃𝑃 is computed as 𝑄𝑄 with all instances of 𝑥𝑥 replaced by 𝐸𝐸. 
Example: Find the weakest precondition given the following statement and postcondition. 
a=b/2-1; {a<10} 

1. b/2-1 < 10 
2. b/2 < 11 
3. b < 22 

3.5.3.4 Sequences 
 Let 𝑆𝑆1 and 𝑆𝑆2 be sequential statements and 𝑃𝑃1, 𝑃𝑃2, and 𝑃𝑃3 be assertions used either as 

preconditions or postconditions.  Consider the following 
{𝑃𝑃1} 𝑆𝑆1 {𝑃𝑃2} 
{𝑃𝑃2} 𝑆𝑆2 {𝑃𝑃3} 
 
The inference rule for such a two-statement sequence is 

{𝑃𝑃1} 𝑆𝑆1 {𝑃𝑃2}, {𝑃𝑃2} 𝑆𝑆2 {𝑃𝑃3}
{𝑃𝑃1}𝑆𝑆1; 𝑆𝑆2{𝑃𝑃3}

 

 

3.5.3.5 Selection 
 Consider 

if B then S1 else S2 
 
The inference rule is: 

{𝐵𝐵 ∧ 𝑃𝑃}𝑆𝑆1{𝑄𝑄}, {(¬𝐵𝐵) ∧ 𝑃𝑃}𝑆𝑆2{𝑄𝑄}
{𝑃𝑃}𝐢𝐢𝐢𝐢 𝐵𝐵 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑆𝑆1 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑆𝑆2 {𝑄𝑄}

 

 
where 𝑃𝑃 is the precondition and 𝑄𝑄 is the postcondition. 
 
Example 
if x>0 then y=y-1 else y=y+1 {y>0} 
 
Applying the postcondition to the then-clause. 
y=y-1 {y>0} implies {y>1} 
 
Applying the postcondition to the else-clause 
y=y+1 {y>0} implies {y>0} 
 
Because {y>1} implies {y>0} we use the {y>1} for the precondition. 

3.5.3.6 Logical Pretest Loops 
• Loops are more difficult because the number of iterations is known, in many cases, only 

during execution. 
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• Axiomatic semantics seeks to find a loop invariant that is equivalent to the inductive 
hypothesis. 

• The weakest precondition can be found by examining the loop invariant. 
• The inference rule for computing the precondition for a while-loop is 

(𝐼𝐼 ∧ 𝐵𝐵)𝑆𝑆{𝐼𝐼}
{𝐼𝐼}𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐵𝐵 𝐝𝐝𝐝𝐝 𝑆𝑆 𝐞𝐞𝐞𝐞𝐞𝐞 {𝐼𝐼 ∧ (¬𝐵𝐵)}

 

where 𝐼𝐼 is the loop-invariant. 
 

• The axiomatic description of a while-loop is: 
{P} while B do S end {Q} 

3.5.3.7 Program Proofs 
 

The first example of a correctness proof is for a very short program, consisting of a sequence 
of three assignment statements that interchange the value of two variables. 
 
{x=A AND y=B} 
t:=x; 
x:=y; 
y:=t; 
{x=B AND y=A} 
 
{x=A AND y=B} 
t:=x; 
{x=A AND t=A AND y=B} 
x:=y; 
{x=B AND t=A AND y=B} 
y:=t; 
{x=B AND t=A AND y=A} 
{x=B AND y=A} 
 

3.5.3.8 Evaluation 
 Defining axioms or inference rules for all statements of programming languages has 

proven to be difficult. 
 Axiomatic semantics is a tool for research into program correctness proofs. 
 Axiomatic semantics has limited usefulness for compiler writers and for language users. 
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