Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3 Describing Syntax and Semantics

3.1

3.2

3.2.1

3.2.2

Introduction

= syntax — expressions, statements, program units

= semantics — meaning

The General Problem of Describing Syntax

= alphabet
= strings from the alphabet
= sentences composed of strings
= lexemes or tokens Lexemes are described separately from the grammar of the
language. Lexemes are identifiers, literals, punctuation
= tokens are represented as a pair
0 the string recognized
O a unique integer code often expressed symbolically as an enumeration
constant

Example
statement index=2 * count + 17,

Lexeme Token(integer code)

index ID(1)

= ASSIGN(2)
2 INTLIT(3)
* STAR(4)
count ID(1)

+ PLUS(5)
17 INTLIT(3)

; SEMICOLON(6)

Language Recognizers

= Language can be formally defined in two distinct ways:
1) recognition
2) generation

Language Generators

= A lLanguage Generator is a device that can be used to generate sentences in a
language. Recall that a sentence in a programming language is a program.

= Perhaps a language generator could be an aid to testing an implementation of a
language but has little use in other areas.

= Alanguage generator is interesting because programming language grammars can be
used both to recognize and generate sentences in the grammar of a programming
language.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.3 Formal Methods of Describing Syntax

3.3.1

3.3.1.1

3.3.1.2

3.3.1.3

3.3.14

Backus-Naur Form and Context-Free Grammars

Context-free Grammars

= Chomsky defined four classes of grammars. Two of these classes are context-free
and regular.

= Tokens can be described by regular expressions

= The syntax of most programming languages can be described by context-free
grammars.

Origins of Backus-Naur Form

= ALGOL58
= ACM-GAMM Conference 1959 John Backus
= Later modified by Peter Naur. Backus-Naur Form

Fundamentals

Metalanguage
A metalanguage is employed to describe the grammar of a programming language. A
metalanguage contains four attributes as described below.

Context-free grammars

1. Terminals are the basic symbols from which strings are formed. The token is a
synonym for “terminal” when we are talking about grammars for programming
languages. Terminal strings are presented in bold. Terminal strings include
reserve words if, then, else, while.

2. Nonterminals are syntactic variables the denote sets of strings. Example.
statement —if expression then statement else statement
<statement> — if <expression> then <statement> else <statement>

3. Inagrammar, one nonterminal is distinguished as the start symbol, and the set
of strings it denotes is the language defined by the grammar.

4. The productions of a grammar specify the manner in which the terminals and
nonterminals can be combined to form strings. Each production consists of a
nonterminal, followed by an arrow (sometimes the symbol ::= is used in place
of the arrow), followed by a string of nonterminals and terminals.

Describing Lists
identifier-list —id
identifier-list —id, identifier-list

Programming Languages
CMSC 4023

3.3.1.5 Grammars and Derivations

Describing Syntax and Semantics
Chapter 3

Id LHS RHS

1 | program - begin statement-list end
2 | statement-list - statement

3 | statement-list - statement ; statement-list
4 | statement - var = expression

5 | var - A

6 |var - B

7 | var - C

8 | expression - var + var

9 | expression - var —var

10 | expression - var

Consider a sentence, a program, in the grammar given above.

beginA=B+C;B=C end

A sentence in the grammar consists solely of terminal symbols. A derivation starts with
the distinguished symbol and proceeds by substituting productions of the grammar for

nonterminals to derive the sentence.

Sentential form Id | LHS RHS
(rightmost derivation)
program Start with the start symbol
begin statement-list end 1 | program — | begin statement-list
end
begin statement ; statement-list | 3 | statement- | — | statement ; statement-
end list list
begin statement ; statement end 2 | statement- | — | statement
list
begin statement ; var = expression | 4 | statement — | var = expression
end
begin statement ; var = var end 10 | expression - | var
begin statement ; var = C end 7 | var - | C
begin statement ; B = C end 6 |var - | B
begin var = expression ;B=Cend | 4 | statement — | var = expression
begin var = var +var ; B=Cend 8 | expression - | var +var
beginvar=var+C;B=Cend 7 | var - | C
beginvar=B+C;B=Cend 6 | var - | B
beginA=B+C;B=Cend 5 | var - | A

Programming Languages
CMSC 4023

3.3.1.6 Parse Trees

Describing Syntax and Semantics
Chapter 3

Id LHS RHS

1 | assignment — | id = expression

2 |id - | A

3 |id - | B

4 | id - | C

5 | expression — | id + expression

6 | expression — | id * expression

7 | expression — | (expression)

8 | expression - | id

Sentential form Id | LHS RHS

(leftmost derivation)

assignment Start with the start symbol

id = expression 1 | assignment | — | id = expression
A = expression 2 |id A

A = id * expression 6 | expression — | id * expression
A =B * expression 3 |id - | B

A =B * (expression) 7 | expression — | (expression)
A =B * (id + expression) 5 | expression — | id + expression
A =B * (A + expression) 2 |id - | A
A=B*(A+id) 8 | expression - | id
A=B*(A+() 4 |id - |C

id

/ gnlent\

= expression

/

(
id

[| >&“lon\
> eSl[on\ |

+ expression

C

Figure 3.1 Parse Tree for the statement A=B*(A+C)

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.3.1.7 Ambiguity

Definition A grammar that generates a sentential form for which there are two
or more distinct parse trees is said to be ambiguous.

The following grammar is ambiguous.

Id LHS RHS

1 | assignment — | id = expression

2 |id - | A

3 |id - | B

4 | id - | C

5 | expression — | expression + expression

6 | expression — | expression * expression

7 | expression — | (expression)

8 | expression - | id

Consider the two parse trees for the sentence

A=B+C*A
assignment
id = expression
A expression + expression
id expression + expression
B id id
C A

Figure 3.2.1 Parse Tree 1 for the sentence A=B+C+A

Programming Languages Describing Syntax and Semantics

CMSC 4023 Chapter 3
assignment
I
id expression
T

A expression expression
T

expression expression id
id id A
B C

Figure 3.2.2 Parse Tree 2 for the sentence A=B+C+A

Programming Languages
CMSC 4023

Describing Syntax and Semantics
Chapter 3

3.3.1.8 Operator Precedence

Definition Operator precedence specifies the order of execution for different

operators in an expression.

Example: The following unambiguous grammar specifies the normal order in which
operators are evaluated in arithmetic expressions.

Id LHS RHS
1 | assignment — | id = expression
2 |id - | A
3 |id - | B
4 |id - | C
5 | expression - | term
6 | expression — | expression + term
7 | term - | factor
8 | term — | term * factor
9 | factor — | (expression)
10 | factor - | id
Operator Precedence Associativity
() 4 (Highest)
* 3 left
+ 2 left
= 1
Sentential form Id | LHS RHS
(leftmost derivation)
assignment Start with the start symbol
id = expression 1 | assignment | — | id = expression
A = expression 2 |id - | A
A = expression + term 6 | expression — | expression + term
A=term +term 5 | expression - | term
A = factor + term 7 | term - | factor
A=id+term 10 | factor - | id
A=B+term 3 |id - | B
A =B+ term * factor 8 | term — | term * factor
A =B + factor * factor 7 | term — | factor
A=B+id* factor 10 | factor - | id
A =B+ C* factor 4 |id - |C
A=B+C*id 10 | factor - | id
A=B+C*A 2 | id - | A

Programming Languages Describing Syntax and Semantics

CMSC 4023 Chapter 3
assignment
id = expression
A expression + term
term term * factor
factor factor id
id id A
B C

Figure 3.3 Unique parse tree for A=B+C*A using an unambiguous grammar

3.3.1.9 Associativity of Operators

Definition Associativity defines the order of operations in an expression when
operators have the same precedence.

Example: A=B+C+A

There are two operations in the expression B+C+A. Since both operations are addition,
they have the same precedence. Which addition is performed first? Is the sum of B+C
computed first and then the value of A added to the sum. Or, alternatively, is the sum
of C+A found first followed by adding B to the sum of C+A?

The grammar defines the order in which operations are performed. An operator can
left-associative or right-associative. If an operator is left-associative then operations are
performed left to right. If an operator is right-associative, operations are performed
right to left.

Consider the excerpt from the C++ grammar for additive expressions.

Id LHS RHS
additive-expression — | multiplicative-expression
additive-expression — | additive-expression + multiplicative-expression
additive-expression — | additive-expression - multiplicative-expression

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

Addition operators, + and -, associative to the left because the recursive nonterminal
symbol, additive-expression, appears leftmost on the right hand side of the production.

Consider the following grammar and a sentence in the grammar A=B+C+A

Id LHS RHS
assignment — | id = expression
id - | A
id - | B
id - | C
expression — | expression + primary
expression — | expression - primary
primary - | id
primary — | (expression)
assignment
id expression
expression primary
expression primary id
primary id A
id C
B

Figure 3.4 A Parse Tree for A=B+C+A that illustrate a left-associative operator

Programming Languages
CMSC 4023

Describing Syntax and Semantics
Chapter 3

In a similar way, assignment-expressions are right-associative.

Id LHS RHS
assignment-expression — | conditional-expression
assignment-expression — | logical-or-expression assignment-operator

assignment-expression
assignment-expression — | throw-expression
assignment-operator | =
assignment-operator — | *=
assignment-operator - /=
assignment-operator | =
assignment-operator = | %=
assignment-operator | +=
assignment-operator - | -=
assignment-operator — | >>=
assignment-operator —| <<=
assignment-operator - | &=
assignment-operator - | A=
assignment-operator - | |=

Note that the recursive nonterminal assignment-expression appears rightmost on the
right hand side of the highlighted production.

Consider the statement A=B=C=A+3
and the grammar

Id LHS RHS
assignment — | expression = assignment
assignment — | expression
expression — | expression + primary
expression — | primary
primary — | (expression)
primary INTLIT
primary - | ID

10

Programming Languages

CMSC 4023

Describing Syntax and Semantics
Chapter 3

assignment

I

expression assignment

T

primary expression assignment
ID(A) primary expression assignment
ID(B) primary expression

ID(C) expression primary
primary INTLIT(3)
ID(A)

/\

Figure 3.4 A Parse Tree for A=B=C=A+3 that illustrate a right-associative operator

3.3.1.10 An Unambiguous Grammar of if-then-else

Id LHS RHS
if-statement — | if expression then statement
if-statement — | if expression then statement else statement

if done = true
then if denom=0

then quotient := 0;

else quotient := num div denom;

Id LHS RHS
statement matched-statement
statement unmatched-statement

matched-statement

if expression then matched-statement else
unmatched-statement

matched-statement

any-non-if-statement

unmatched-statement

if expression then statement

unmatched-statement

if expression then matched-statement else
unmatched-statement

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.3.2 Extended BNF

Extended BNF or EBNF has three additions not included in BNF.
1. Braces [] designate optional suffixes

Example BNF:
if-statement — if (expression) statement
if-statement — if (expression) statement else statement

Equivalent EBNF:
if-statement — if (expression) statement [else statement]

Note that the braces are not printed in bold to distinguish them from terminal
symbols which are printed in bold.

2. Brackets {} specify that a suffix is repeated zero or more times
Example BNF:
identifier-list — identifier
identifier-list — identifier-list , identifier

Equivalent EBNF:
identifier-list — identifier {, identifier}

Note that the brackets are not printed in bold to distinguish them from terminal
symbols which are printed in bold.

3. Parentheses () indicate that one of the items enclosed in the parentheses must

be selected.

Example BNF:
term — term * factor
term - term [/ factor
term — term % factor

Equivalent EBNF:
term - term{(*|/]|%) term}

Note that the parentheses are not printed in bold to distinguish them from
terminal symbols which are printed in bold.

12

Programming Languages Describing Syntax and Semantics

CMSC 4023 Chapter 3

BNF:

expression - term

expression — expression + term
expression — expression - term
term - factor

term — term * factor

term — term / factor

factor - id

factor — (expression)
EBNF:

expression - term {(+|-) term}
term - factor {(*|/|-) factor}
factor — id | (expression)

3.3.2.1 Syntax Graphs
for-statement — for variable := initial-expression to final-expression do statement

for-statement

variable initial-expression

A

stotement [<——(po)

Syntax Graph for a for-statement

3.3.3 Grammars and Recognizers

= Given a context free grammar a recognizer can be implemented.
= Arecognizeris a parser or a syntax analyzer, the second phase of a compiler.

3.4 Attribute Grammars

= An attribute grammar can be used to amplify a context free grammar to include
semantic information.

3.4.1 Static Semantics

= Any form of static analysis is analysis performed at compile-time — during compilation.
= Dynamic analysis, in contrast to static analysis, is performed during execution.
= Static semantics refers to those semantics that can be performed during compilation.

13

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.4.2 Basic Concepts

= Attribute grammars are context-free grammars to which have been added attributes,
attribute computation functions, and predicate functions.

= Attributes, which are associated with grammar symbols, terminal and nonterminal, are
similar to variables in the sense that they can have values assigned to them.

= Attribute computation functions, sometimes called semantic functions, are associated
with grammar rules.

= Predicate functions, which state the static semantic rules of the language, are
associated with grammar rules.

3.4.3 Attribute Grammars Defined

= Associated with each grammar symbol X is a set of attributes A(X). The set A(X)
consists of two disjoint sets S(X) and I(X), called synthesized and inherited attributes.

3.4.4 Synthesized Attributes

Synthesized Attributes. Given a production rule X, — X; -+ X;,, synthesized attributes of
X, can be computed using a function S(X,) = f(A(X;) - A(Xy)).

Example:

Production Rule Semantic Rule

L—-En print(E.val)

E->E +T E.val = E;.val + T.val
E->T E.val =T.val
T->T,+F T.val = T;.val X F.val
T->F T.val :== F.val

F- (E) F.val: = E.val

F — digit F.val = digit. lexval
Notes:

1. Inthe production, L — E n, the n represents a newline character.
2. Members of the grammar symbols are the synthesized attributes. For example,
member val is a synthesized attribute of grammar symbol E.

L

IS

E.val=19 n
A
E.val=15 + Tval=4
| |
Tval=15 Fval=4
P |
Tval=3 * Fval=5 digit/exval=4
| |
Fval=3 digit./exval=5

digit /exval=3

Annotated parse tree for 3*5+4 n

14

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.4.5 Inherited Attributes
Inherited Attributes. Given a production rule X, — X; -+ Xj --- X, inherited attributes of
X; can be computed using a function I(Xj) = f(A(Xl) -~-A(Xn)) wherel <j<n

Example:

Production Rule Semantic Rule

D->TL L.in=T.type

T — int T.type = integer

T - real T.type = real

L->L, id Li.in=L.in
addtype(id. entry, L.in)

L—id addtype(id. entry, L.in)

T.type=real L.in=real

real L.in=real
i

S~

id

3

/

L.in=real ’

id,

d

2

Parse tree with inherited attribute in at each node labeled L.

15

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.5 Describing the Meanings of Programs: Dynamic Semantics

= Dynamic semantics are used to specify the meaning of expressions, statements, and
program units of a programming language.
= Describing syntax is relatively easy — describing semantics is more difficult because
0 Thereis no universally accepted notation for dynamic semantics.
0 Imprecise English descriptions are often used.
0 Semantics are implemented in the compiler translating the language and
different compilers may implement a language differently even if the same
machine is targeted.

3.5.1 Operational Semantics

= QOperational semantics are used to describe the meaning of a statement or program by
specifying the effects of running it on a machine.

3.5.1.1 The Basic Process

= Example
C Statement Meaning
for (expr1; expr2; expr3) statement; exprl;
loop: if expr2 == 0 goto out
statement;
expr3;
goto loop;
out:

= Programming language constructs are defined in terms of virtual machine primitives.
= The virtual machine is a precise definition of a machine that has no real existence.

3.5.1.2 Evaluation

= PL/I was the first language to employ formal operational semantics. IBM named the
semantic definition language the Vienna Definition Language (VDL).

3.5.2 Denotational Semantics

= Denotational semantics is the most rigorous and most widely known method for
describing the meaning of programs.

= Define a mathematical object for each programming language entity.

= Define a mathematical function that maps instances of each language entity to its
mathematical object.

= The domain of the mathematical functions for a denotational semantics programming
language specification is called the syntactic domain.

= The range of the mathematical functions for a denotational semantics programming
language specification is called the semantic domain.

= In operational semantics, programming language constructs are translated into
simpler programming constructs, which become the basis of the meaning of the
construct.

= In denotational semantics, programming language constructs are mapped to
mathematical objects, either sets or, more often, functions. However, unlike

16

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

operational semantics, denotational semantics does not model the step-by-step
computational processing of programs.

3.5.2.1 Two Simple Examples
binary-number - 0
binary-number 1
binary-number binary-number ‘0’
binary-number binary-number ‘1’

L1l

6
binary-number

T

3
binary-number

T

1

binary-number

Iol

111

lll
Parse Tree of the Binary Number 110

= The semantic function My;,, maps the syntactic objects, as described in the previous
grammar rules, to the objects in N, the set of non-negative decimal numbers.

Mpin(0') =0
My (1) =1
Mp;n (binary — number '0") = 2 X My;, (binary — number)
My, (binary — number '1") = 2 X My;, (binary — number) + 1

3.5.2.2 The State of a Program

= Denotational semantics employs the state of the program to describe meaning.
= The state of the program is a set of ordered pairs,
s ={<i.v >, <ipvy >, < lip.v, >}
= Each i is the name of a variable.
= Each corresponding v is the current value of the variable.
= |n contrast operational semantics are defined in terms of the state changes on an
ideal computer.
* The value of VARMAP(i;, s) is v}, the value paired with i; in state s.

17

Programming Languages
CMSC 4023

3.5.2.3 Expressions

Describing Syntax and Semantics
Chapter 3

= Consider the expression grammar below.

expression
expression
expression
binary-expression
left-expression
left-expression
right-expression
right-expression
operator
operator

decimal-number

variable

binary-expression

left-expression operator right-expression
decimal-number

variable

decimal-number

variable

+

l

il Ll

- -

= The mapping function for a given expression E and a state s.
0 The symbol A= is used to define mathematical functions.

0 The symbol => is used in the following definitions to connect the form of an

operand with its associated case (or switch) construct.

0 Dot notation is used to refer to the child nodes of a node.

<binary_expr>.<left_expr> refers to the left child node of the <binary_expr>.

M, (expression,s)A= case expression of

decimal-number
variable

decimal-number

=> M, (decimal-number,s)
=> if VARMAP(variable,s)==undef
then error
else VARMAP(variable,s)
=>
if (M, (binary-expression.left-expression,s)==undef
OR M, (binary-expression.right-expression,s) ==undef)
then error
else if (binary-expression.operator=="+")
then M, (binary-expression.left-expression,s)
+ M,(binary-expression.right-expression,s)
else M,(binary-expression.left-expression,s)
M, (binary-expression.right-expression,s)

3.5.2.4 Assignment Statements
M, (x = E, s)A=if M,(E, s)==error

then error

elses’ = {< iy, v] >,< iy vy >, , < iy vy >}, where

forj =12,

,n

then v/ = M,(E,s)
else v; =VARMAP(i;, s)

3.5.2.5 Logical Pretest Loops

M, (while B do L, s)A= if My(B, s)==undef

then error

18

For example,

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.5.2.6

3.53

3.5.3.1

3.5.3.2

else if M (B, s)==false
then s
else if Mg (L, s)==error
then error
else M; (while B do L, My(L, s))

Evaluation

When the description of a language construct employing denotational semantics proves
to be difficult, it can be a sign that the construct is ill-conceived.

The complexity of denotational descriptions makes them of little use to language users.
Other than PL/I our text mentions no programming languages where denotational
semantics were employed.

Axiomatic Semantics

Axiomatic semantics are based on mathematical logic.

The primary use of axiomatic semantics is to prove that program fragments function
according to specification — program verification. This is called program proof of
correctness.

Assertions

Logical expressions used in axiomatic semantics are called predicates or assertions.
Assertions are used to define the precondition and the postcondition of a statement.
Example postcondition (enclosed in braces}

{x = 0}sum=2*x+1; {sum=>1}

Weakest Preconditions

The weakest precondition is the least restrictive precondition that will guarantee the
validity of the associated postcondition.
Example preconditions for the postcondition {sum>1}
0 {x>0} sum=2*x+1; {sum>1}
0 {x>10} sum=2*x+1; {sum>1}
0 {x>50} sum=2*x+1; {sum>1}
0 {x>1000} sum=2*x+1; {sum>1}
The weakest precondition that will guarantee the postcondition is {x>0}.

An inference rule is a method of inferring the truth of one assertion on the basis of the
values of other assertions.

$1,52,---,5n

S
This rule states that if S1,52, -+, and Sn are true, then the truth of S can be inferred.

19

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

3.5.3.3

3.5.34

3.5.3.5

3.5.3.6

Assignment Statements

Let x = E be a general assignment statement and Q be its postcondition. The
precondition, P, is defined by the axiom.

P =0Qy.g
which means that P is computed as Q with all instances of x replaced by E.
Example: Find the weakest precondition given the following statement and postcondition.
a=b/2-1; {a<10}

1. bf2-1<10

2. bf2<11

3. b<22
Sequences

Let S1 and S2 be sequential statements and P1, P2, and P3 be assertions used either as
preconditions or postconditions. Consider the following

{P1}S1{P2}

{P2}S2 {P3}

The inference rule for such a two-statement sequence is
{P1} S1{P2},{P2} S2 {P3}

{(P1}S1; S2{P3}

Selection

Consider
if B then S1 else S2

The inference rule is:

{B A P}S1{Q},{(=B) A P}S2{Q}
{P}if B then S1 else S2 {Q}

where P is the precondition and Q is the postcondition.

Example
if x>0 then y=y-1 else y=y+1 {y>0}

Applying the postcondition to the then-clause.
y=y-1{y>0} implies {y>1}

Applying the postcondition to the else-clause
y=y+1 {y>0} implies {y>0}

Because {y>1} implies {y>0} we use the {y>1} for the precondition.

Logical Pretest Loops

Loops are more difficult because the number of iterations is known, in many cases, only
during execution.

20

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

e Axiomatic semantics seeks to find a loop invariant that is equivalent to the inductive
hypothesis.
e The weakest precondition can be found by examining the loop invariant.
o The inference rule for computing the precondition for a while-loop is
(I AB)S{I}

{I}while B do S end {I A (=B)}
where I is the loop-invariant.

e The axiomatic description of a while-loop is:
{P} while B do S end {Q}

3.5.3.7 Program Proofs

The first example of a correctness proof is for a very short program, consisting of a sequence
of three assignment statements that interchange the value of two variables.

{x=A AND y=B}
t:=x;
X:=y;
y:=t;
{x=B AND y=A}

{x=A AND y=B}

t:=x;

{x=A AND t=A AND y=B}
X:=Y;

{x=B AND t=A AND y=B}
y:=t;

{x=B AND t=A AND y=A}
{x=B AND y=A}

3.5.3.8 Evaluation

= Defining axioms or inference rules for all statements of programming languages has
proven to be difficult.

= Axiomatic semantics is a tool for research into program correctness proofs.

= Axiomatic semantics has limited usefulness for compiler writers and for language users.

21

	3 Describing Syntax and Semantics
	3.1 Introduction
	 syntax – expressions, statements, program units
	3.2 The General Problem of Describing Syntax
	3.2.1 Language Recognizers
	3.2.2 Language Generators

	3.3 Formal Methods of Describing Syntax
	3.3.1 Backus-Naur Form and Context-Free Grammars
	3.3.1.1 Context-free Grammars
	3.3.1.2 Origins of Backus-Naur Form
	3.3.1.3 Fundamentals
	3.3.1.4 Describing Lists
	3.3.1.5 Grammars and Derivations
	3.3.1.6 Parse Trees
	3.3.1.7 Ambiguity
	3.3.1.8 Operator Precedence
	3.3.1.9 Associativity of Operators
	3.3.1.10 An Unambiguous Grammar of if-then-else

	3.3.2 Extended BNF
	Note that the braces are not printed in bold to distinguish them from terminal symbols which are printed in bold.
	Note that the brackets are not printed in bold to distinguish them from terminal symbols which are printed in bold.
	Note that the parentheses are not printed in bold to distinguish them from terminal symbols which are printed in bold.
	3.3.2.1 Syntax Graphs

	3.3.3 Grammars and Recognizers

	3.4 Attribute Grammars
	3.4.1 Static Semantics
	3.4.2 Basic Concepts
	3.4.3 Attribute Grammars Defined
	3.4.4 Synthesized Attributes
	3.4.5 Inherited Attributes

	3.5 Describing the Meanings of Programs: Dynamic Semantics
	3.5.1 Operational Semantics
	3.5.1.1 The Basic Process
	3.5.1.2 Evaluation

	3.5.2 Denotational Semantics
	3.5.2.1 Two Simple Examples
	3.5.2.2 The State of a Program
	3.5.2.3 Expressions
	3.5.2.4 Assignment Statements
	3.5.2.5 Logical Pretest Loops
	3.5.2.6 Evaluation

	3.5.3 Axiomatic Semantics
	3.5.3.1 Assertions
	3.5.3.2 Weakest Preconditions
	3.5.3.3 Assignment Statements
	3.5.3.4 Sequences
	3.5.3.5 Selection
	3.5.3.6 Logical Pretest Loops
	3.5.3.7 Program Proofs
	The first example of a correctness proof is for a very short program, consisting of a sequence of three assignment statements that interchange the value of two variables.
	3.5.3.8 Evaluation

