
Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 1

3 Describing Syntax and Semantics

3.1 Introduction

 syntax – expressions, statements, program units
 semantics – meaning

3.2 The General Problem of Describing Syntax
 alphabet
 strings from the alphabet
 sentences composed of strings
 lexemes or tokens Lexemes are described separately from the grammar of the

language. Lexemes are identifiers, literals, punctuation
 tokens are represented as a pair

o the string recognized
o a unique integer code often expressed symbolically as an enumeration

constant

Example

statement index = 2 * count + 17;

Lexeme Token(integer code)
index ID(1)
= ASSIGN(2)
2 INTLIT(3)
* STAR(4)
count ID(1)
+ PLUS(5)
17 INTLIT(3)
; SEMICOLON(6)

3.2.1 Language Recognizers
 Language can be formally defined in two distinct ways:

1) recognition
2) generation

3.2.2 Language Generators
 A Language Generator is a device that can be used to generate sentences in a

language. Recall that a sentence in a programming language is a program.
 Perhaps a language generator could be an aid to testing an implementation of a

language but has little use in other areas.
 A language generator is interesting because programming language grammars can be

used both to recognize and generate sentences in the grammar of a programming
language.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 2

3.3 Formal Methods of Describing Syntax

3.3.1 Backus-Naur Form and Context-Free Grammars

3.3.1.1 Context-free Grammars
 Chomsky defined four classes of grammars. Two of these classes are context-free

and regular.
 Tokens can be described by regular expressions
 The syntax of most programming languages can be described by context-free

grammars.

3.3.1.2 Origins of Backus-Naur Form
 ALGOL 58
 ACM-GAMM Conference 1959 John Backus
 Later modified by Peter Naur. Backus-Naur Form

3.3.1.3 Fundamentals
Metalanguage

A metalanguage is employed to describe the grammar of a programming language. A
metalanguage contains four attributes as described below.

Context-free grammars
1. Terminals are the basic symbols from which strings are formed. The token is a

synonym for “terminal” when we are talking about grammars for programming
languages. Terminal strings are presented in bold. Terminal strings include
reserve words if, then, else, while.

2. Nonterminals are syntactic variables the denote sets of strings. Example.
statement →if expression then statement else statement
<statement> → if <expression> then <statement> else <statement>

3. In a grammar, one nonterminal is distinguished as the start symbol, and the set
of strings it denotes is the language defined by the grammar.

4. The productions of a grammar specify the manner in which the terminals and
nonterminals can be combined to form strings. Each production consists of a
nonterminal, followed by an arrow (sometimes the symbol ::= is used in place
of the arrow), followed by a string of nonterminals and terminals.

3.3.1.4 Describing Lists
identifier-list →id
identifier-list →id, identifier-list

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 3

3.3.1.5 Grammars and Derivations
Id LHS RHS
1 program → begin statement-list end
2 statement-list → statement
3 statement-list → statement ; statement-list
4 statement → var = expression
5 var → A
6 var → B
7 var → C
8 expression → var + var
9 expression → var – var

10 expression → var

Consider a sentence, a program, in the grammar given above.
begin A = B + C ; B = C end

A sentence in the grammar consists solely of terminal symbols. A derivation starts with
the distinguished symbol and proceeds by substituting productions of the grammar for
nonterminals to derive the sentence.

Sentential form
(rightmost derivation)

Id LHS RHS

program Start with the start symbol
begin statement-list end 1 program → begin statement-list

end
begin statement ; statement-list
end

3 statement-
list

→ statement ; statement-
list

begin statement ; statement end 2 statement-
list

→ statement

begin statement ; var = expression
end

4 statement → var = expression

begin statement ; var = var end 10 expression → var
begin statement ; var = C end 7 var → C
begin statement ; B = C end 6 var → B
begin var = expression ; B = C end 4 statement → var = expression
begin var = var + var ; B = C end 8 expression → var + var
begin var = var + C ; B = C end 7 var → C
begin var = B + C ; B = C end 6 var → B
begin A = B + C ; B = C end 5 var → A

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 4

3.3.1.6 Parse Trees
Id LHS RHS
1 assignment → id = expression
2 id → A
3 id → B
4 id → C
5 expression → id + expression
6 expression → id * expression
7 expression → (expression)
8 expression → id

Sentential form
(leftmost derivation)

Id LHS RHS

assignment Start with the start symbol
id = expression 1 assignment → id = expression
A = expression 2 id → A
A = id * expression 6 expression → id * expression
A = B * expression 3 id → B
A = B * (expression) 7 expression → (expression)
A = B * (id + expression) 5 expression → id + expression
A = B * (A + expression) 2 id → A
A = B * (A + id) 8 expression → id
A = B * (A + C) 4 id → C

expression

expression

expression

expression

assignment

id

id

id

id

+

A

C

()

*

=

A

B

Figure 3.1 Parse Tree for the statement A=B*(A+C)

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 5

3.3.1.7 Ambiguity
Definition A grammar that generates a sentential form for which there are two

or more distinct parse trees is said to be ambiguous.

The following grammar is ambiguous.

Id LHS RHS
1 assignment → id = expression
2 id → A
3 id → B
4 id → C
5 expression → expression + expression
6 expression → expression * expression
7 expression → (expression)
8 expression → id

Consider the two parse trees for the sentence
A=B+C*A

assignment

expression

expressionexpression

expression expression

id

id

id id

=

+

+

A

B

C A
Figure 3.2.1 Parse Tree 1 for the sentence A=B+C+A

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 6

expression expression

expression

expression

expression

=

+

+

A

B C

Aid id

id

id

assignment

Figure 3.2.2 Parse Tree 2 for the sentence A=B+C+A

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 7

3.3.1.8 Operator Precedence
Definition Operator precedence specifies the order of execution for different

operators in an expression.

Example: The following unambiguous grammar specifies the normal order in which
operators are evaluated in arithmetic expressions.

Id LHS RHS
1 assignment → id = expression
2 id → A
3 id → B
4 id → C
5 expression → term
6 expression → expression + term
7 term → factor
8 term → term * factor
9 factor → (expression)

10 factor → id

Operator Precedence Associativity
() 4 (Highest)
* 3 left
+ 2 left
= 1

Sentential form
(leftmost derivation)

Id LHS RHS

assignment Start with the start symbol
id = expression 1 assignment → id = expression
A = expression 2 id → A
A = expression + term 6 expression → expression + term
A = term + term 5 expression → term
A = factor + term 7 term → factor
A = id + term 10 factor → id
A = B + term 3 id → B
A = B + term * factor 8 term → term * factor
A = B + factor * factor 7 term → factor
A = B + id * factor 10 factor → id
A = B + C * factor 4 id → C
A = B + C * id 10 factor → id
A = B + C * A 2 id → A

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 8

assignment

expression

term

factortermterm

expression

id

factor factor id

idid

B C

A

A

=

+

*

Figure 3.3 Unique parse tree for A=B+C*A using an unambiguous grammar

3.3.1.9 Associativity of Operators
Definition Associativity defines the order of operations in an expression when

operators have the same precedence.

Example: A=B+C+A
There are two operations in the expression B+C+A. Since both operations are addition,
they have the same precedence. Which addition is performed first? Is the sum of B+C
computed first and then the value of A added to the sum. Or, alternatively, is the sum
of C+A found first followed by adding B to the sum of C+A?

The grammar defines the order in which operations are performed. An operator can
left-associative or right-associative. If an operator is left-associative then operations are
performed left to right. If an operator is right-associative, operations are performed
right to left.

Consider the excerpt from the C++ grammar for additive expressions.

Id LHS RHS
 additive-expression → multiplicative-expression
 additive-expression → additive-expression + multiplicative-expression
 additive-expression → additive-expression - multiplicative-expression

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 9

Addition operators, + and -, associative to the left because the recursive nonterminal
symbol, additive-expression, appears leftmost on the right hand side of the production.

Consider the following grammar and a sentence in the grammar A=B+C+A

Id LHS RHS
 assignment → id = expression
 id → A
 id → B
 id → C
 expression → expression + primary
 expression → expression - primary
 primary → id
 primary → (expression)

Figure 3.4 A Parse Tree for A=B+C+A that illustrate a left-associative operator

assignment

id expression

expression primary

expression primary

primary

A

=

+

+

id

id

id

B

C

A

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 10

In a similar way, assignment-expressions are right-associative.

Id LHS RHS
 assignment-expression → conditional-expression
 assignment-expression → logical-or-expression assignment-operator

assignment-expression
 assignment-expression → throw-expression

 assignment-operator → =
 assignment-operator → *=
 assignment-operator → /=
 assignment-operator → =
 assignment-operator → %=
 assignment-operator → +=
 assignment-operator → -=
 assignment-operator → >>=
 assignment-operator → <<=
 assignment-operator → &=
 assignment-operator → ^=
 assignment-operator → |=

Note that the recursive nonterminal assignment-expression appears rightmost on the
right hand side of the highlighted production.

Consider the statement A=B=C=A+3
and the grammar

Id LHS RHS
 assignment → expression = assignment
 assignment → expression
 expression → expression + primary
 expression → primary
 primary → (expression)
 primary INTLIT
 primary → ID

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 11

assignment

assignment=expression

expression = assignment

expression

expression

expression

= assignment

primary

primary

primary

primary

primary

ID(A)

ID(B)

ID(C)

ID(A)

INTLIT(3)

+

Figure 3.4 A Parse Tree for A=B=C=A+3 that illustrate a right-associative operator

3.3.1.10 An Unambiguous Grammar of if-then-else
Id LHS RHS
 if-statement → if expression then statement
 if-statement → if expression then statement else statement

if done = true

then if denom = 0
then quotient := 0;
else quotient := num div denom;

Id LHS RHS
 statement matched-statement
 statement unmatched-statement
 matched-statement if expression then matched-statement else

unmatched-statement
 matched-statement any-non-if-statement
 unmatched-statement if expression then statement
 unmatched-statement if expression then matched-statement else

unmatched-statement

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 12

3.3.2 Extended BNF
Extended BNF or EBNF has three additions not included in BNF.

1. Braces [] designate optional suffixes
Example BNF:

if-statement → if (expression) statement
if-statement → if (expression) statement else statement

Equivalent EBNF:

if-statement → if (expression) statement [else statement]

Note that the braces are not printed in bold to distinguish them from terminal
symbols which are printed in bold.

2. Brackets {} specify that a suffix is repeated zero or more times

Example BNF:
identifier-list → identifier
identifier-list → identifier-list , identifier

Equivalent EBNF:

identifier-list → identifier { , identifier}

Note that the brackets are not printed in bold to distinguish them from terminal
symbols which are printed in bold.

3. Parentheses () indicate that one of the items enclosed in the parentheses must

be selected.
Example BNF:

term → term * factor
term → term / factor
term → term % factor

Equivalent EBNF:

term → term {(*|/|%) term}

Note that the parentheses are not printed in bold to distinguish them from
terminal symbols which are printed in bold.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 13

BNF:
expression → term
expression → expression + term
expression → expression - term
term → factor
term → term * factor
term → term / factor
factor → id
factor → (expression)

EBNF:

expression → term {(+|-) term}
term → factor {(*|/|-) factor}
factor → id | (expression)

3.3.2.1 Syntax Graphs
for-statement → for variable := initial-expression to final-expression do statement

for-statement

initial-expressionvariableFOR :=

TO

statement DO final-expression
Syntax Graph for a for-statement

3.3.3 Grammars and Recognizers
 Given a context free grammar a recognizer can be implemented.
 A recognizer is a parser or a syntax analyzer, the second phase of a compiler.

3.4 Attribute Grammars
 An attribute grammar can be used to amplify a context free grammar to include

semantic information.

3.4.1 Static Semantics
 Any form of static analysis is analysis performed at compile-time – during compilation.
 Dynamic analysis, in contrast to static analysis, is performed during execution.
 Static semantics refers to those semantics that can be performed during compilation.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 14

3.4.2 Basic Concepts
 Attribute grammars are context-free grammars to which have been added attributes,

attribute computation functions, and predicate functions.
 Attributes, which are associated with grammar symbols, terminal and nonterminal, are

similar to variables in the sense that they can have values assigned to them.
 Attribute computation functions, sometimes called semantic functions, are associated

with grammar rules.
 Predicate functions, which state the static semantic rules of the language, are

associated with grammar rules.

3.4.3 Attribute Grammars Defined
 Associated with each grammar symbol 𝑋𝑋 is a set of attributes 𝐴𝐴(𝑋𝑋). The set 𝐴𝐴(𝑋𝑋)

consists of two disjoint sets 𝑆𝑆(𝑋𝑋) and 𝐼𝐼(𝑋𝑋), called synthesized and inherited attributes.

3.4.4 Synthesized Attributes
Synthesized Attributes. Given a production rule 𝑋𝑋0 → 𝑋𝑋1⋯𝑋𝑋𝑛𝑛, synthesized attributes of
𝑋𝑋0 can be computed using a function 𝑆𝑆(𝑋𝑋0) = 𝑓𝑓�𝐴𝐴(𝑋𝑋1)⋯𝐴𝐴(𝑋𝑋𝑛𝑛)�.

Example:
Production Rule Semantic Rule
𝐿𝐿 → 𝐸𝐸 𝐧𝐧 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣)
𝐸𝐸 → 𝐸𝐸1 + 𝑇𝑇 𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝐸𝐸1. 𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣
𝐸𝐸 → 𝑇𝑇 𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣
𝑇𝑇 → 𝑇𝑇1 ∗ 𝐹𝐹 𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝑇𝑇1.𝑣𝑣𝑣𝑣𝑣𝑣 × 𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣
𝑇𝑇 → 𝐹𝐹 𝑇𝑇. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣
𝐹𝐹 → (𝐸𝐸) 𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣: = 𝐸𝐸. 𝑣𝑣𝑣𝑣𝑣𝑣
𝐹𝐹 → 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐹𝐹. 𝑣𝑣𝑣𝑣𝑣𝑣 ≔ 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Notes:
1. In the production, 𝐿𝐿 → 𝐸𝐸 𝐧𝐧, the 𝐧𝐧 represents a newline character.
2. Members of the grammar symbols are the synthesized attributes. For example,

member 𝑣𝑣𝑣𝑣𝑣𝑣 is a synthesized attribute of grammar symbol 𝐸𝐸.

T.val=15

E.val=19

E.val=15 T.val=4

T.val=3

digit.lexval=3

digit.lexval=5

digit.lexval=4

F.val=3

F.val=5

F.val=4

L

n

+

*

Annotated parse tree for 3*5+4 n

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 15

3.4.5 Inherited Attributes
Inherited Attributes. Given a production rule 𝑋𝑋0 → 𝑋𝑋1⋯𝑋𝑋𝑗𝑗 ⋯𝑋𝑋𝑛𝑛, inherited attributes of
𝑋𝑋𝑗𝑗 can be computed using a function 𝐼𝐼�𝑋𝑋𝑗𝑗� = 𝑓𝑓�𝐴𝐴(𝑋𝑋1)⋯𝐴𝐴(𝑋𝑋𝑛𝑛)� where 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛

Example:
Production Rule Semantic Rule
𝐷𝐷 → 𝑇𝑇 𝐿𝐿 𝐿𝐿. 𝑖𝑖𝑖𝑖 ≔ 𝑇𝑇. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇 → 𝐢𝐢𝐢𝐢𝐢𝐢 𝑇𝑇. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≔ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇 → 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝑇𝑇. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≔ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐿𝐿 → 𝐿𝐿1 , 𝐢𝐢𝐢𝐢 𝐿𝐿1. 𝑖𝑖𝑖𝑖 ≔ 𝐿𝐿. 𝑖𝑖𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐢𝐢𝐢𝐢. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐿𝐿. 𝑖𝑖𝑖𝑖)
𝐿𝐿 → 𝐢𝐢𝐢𝐢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐢𝐢𝐢𝐢. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝐿𝐿. 𝑖𝑖𝑖𝑖)

id1

id2

id3

L.in=real

L.in=real

L.in=real

D

T.type=real

real

,

,

Parse tree with inherited attribute in at each node labeled L.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 16

3.5 Describing the Meanings of Programs: Dynamic Semantics
 Dynamic semantics are used to specify the meaning of expressions, statements, and

program units of a programming language.
 Describing syntax is relatively easy – describing semantics is more difficult because

o There is no universally accepted notation for dynamic semantics.
o Imprecise English descriptions are often used.
o Semantics are implemented in the compiler translating the language and

different compilers may implement a language differently even if the same
machine is targeted.

3.5.1 Operational Semantics
 Operational semantics are used to describe the meaning of a statement or program by

specifying the effects of running it on a machine.

3.5.1.1 The Basic Process
 Example

C Statement Meaning
for (expr1; expr2; expr3) statement; expr1;

loop: if expr2 == 0 goto out
 statement;
 expr3;
 goto loop;
out:

 Programming language constructs are defined in terms of virtual machine primitives.
 The virtual machine is a precise definition of a machine that has no real existence.

3.5.1.2 Evaluation
 PL/I was the first language to employ formal operational semantics. IBM named the

semantic definition language the Vienna Definition Language (VDL).

3.5.2 Denotational Semantics
 Denotational semantics is the most rigorous and most widely known method for

describing the meaning of programs.
 Define a mathematical object for each programming language entity.
 Define a mathematical function that maps instances of each language entity to its

mathematical object.
 The domain of the mathematical functions for a denotational semantics programming

language specification is called the syntactic domain.
 The range of the mathematical functions for a denotational semantics programming

language specification is called the semantic domain.
 In operational semantics, programming language constructs are translated into

simpler programming constructs, which become the basis of the meaning of the
construct.

 In denotational semantics, programming language constructs are mapped to
mathematical objects, either sets or, more often, functions. However, unlike

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 17

operational semantics, denotational semantics does not model the step-by-step
computational processing of programs.

3.5.2.1 Two Simple Examples
binary-number → ‘0’
binary-number → ‘1’
binary-number → binary-number ‘0’
binary-number → binary-number ‘1’

6

binary-number

3
binary-number

1
binary-number

‘1’

‘1’

‘0’

Parse Tree of the Binary Number 110

 The semantic function 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏, maps the syntactic objects, as described in the previous

grammar rules, to the objects in 𝑁𝑁, the set of non-negative decimal numbers.

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(′0′) = 0
𝑀𝑀𝑏𝑏𝑖𝑖𝑛𝑛(′1′) = 1

𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ′0′) = 2 × 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ′1′) = 2 × 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) + 1

3.5.2.2 The State of a Program
 Denotational semantics employs the state of the program to describe meaning.
 The state of the program is a set of ordered pairs,

𝑠𝑠 = {< 𝑖𝑖1.𝑣𝑣1 >, < 𝑖𝑖2.𝑣𝑣2 >,⋯ , < 𝑖𝑖𝑛𝑛.𝑣𝑣𝑛𝑛 >}
 Each 𝑖𝑖 is the name of a variable.
 Each corresponding 𝑣𝑣 is the current value of the variable.
 In contrast operational semantics are defined in terms of the state changes on an

ideal computer.
 The value of VARMAP(𝑖𝑖𝑗𝑗, 𝑠𝑠) is 𝑣𝑣𝑗𝑗, the value paired with 𝑖𝑖𝑗𝑗 in state 𝑠𝑠.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 18

3.5.2.3 Expressions
 Consider the expression grammar below.

expression → decimal-number
expression → variable
expression → binary-expression
binary-expression → left-expression operator right-expression
left-expression → decimal-number
left-expression → variable
right-expression → decimal-number
right-expression → variable
operator → +
operator → -

 The mapping function for a given expression 𝐸𝐸 and a state 𝑠𝑠.
o The symbol ∆= is used to define mathematical functions.
o The symbol => is used in the following definitions to connect the form of an

operand with its associated case (or switch) construct.
o Dot notation is used to refer to the child nodes of a node. For example,

<binary_expr>.<left_expr> refers to the left child node of the <binary_expr>.

𝑀𝑀𝑒𝑒(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑠𝑠)∆= 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐨𝐨𝐨𝐨

decimal-number => 𝑀𝑀𝑒𝑒(decimal-number,s)
variable => 𝐢𝐢𝐢𝐢 𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕(variable,s)==undef

then error
else 𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕𝐕(variable,s)

decimal-number =>
if (𝑀𝑀𝑒𝑒(binary-expression.left-expression,s)==undef
OR 𝑀𝑀𝑒𝑒(binary-expression.right-expression,s) ==undef)

then error
else if (binary-expression.operator==’+’)

then 𝑀𝑀𝑒𝑒(binary-expression.left-expression,s)
 + 𝑀𝑀𝑒𝑒(binary-expression.right-expression,s)
else 𝑀𝑀𝑒𝑒(binary-expression.left-expression,s)
 - 𝑀𝑀𝑒𝑒(binary-expression.right-expression,s)

3.5.2.4 Assignment Statements
𝑀𝑀𝑎𝑎 (𝑥𝑥 = 𝐸𝐸, 𝑠𝑠)∆=if 𝑀𝑀𝑒𝑒(𝐸𝐸, 𝑠𝑠)== error

then error
else 𝑠𝑠′ = {< 𝑖𝑖1,𝑣𝑣1′ >, < 𝑖𝑖2, 𝑣𝑣2′ >,⋯ , < 𝑖𝑖𝑛𝑛,𝑣𝑣𝑛𝑛′ >}, where

for 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛
if 𝑖𝑖𝑗𝑗 == 𝑥𝑥

then 𝑣𝑣𝑗𝑗′ = 𝑀𝑀𝑒𝑒(𝐸𝐸, 𝑠𝑠)
else 𝑣𝑣𝑗𝑗′ =VARMAP(𝑖𝑖𝑗𝑗 , 𝑠𝑠)

3.5.2.5 Logical Pretest Loops
𝑀𝑀𝑙𝑙 (while 𝐵𝐵 do 𝐿𝐿, 𝑠𝑠)∆= if 𝑀𝑀𝑏𝑏(𝐵𝐵, 𝑠𝑠)==undef

then error

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 19

else if 𝑀𝑀𝑏𝑏(𝐵𝐵, 𝑠𝑠)==false
then 𝑠𝑠
else if 𝑀𝑀𝑠𝑠𝑠𝑠(𝐿𝐿, 𝑠𝑠)==error

then error
else 𝑀𝑀𝑙𝑙 (while 𝐵𝐵 do 𝐿𝐿,𝑀𝑀𝑠𝑠𝑠𝑠(𝐿𝐿, 𝑠𝑠))

3.5.2.6 Evaluation
 When the description of a language construct employing denotational semantics proves

to be difficult, it can be a sign that the construct is ill-conceived.
 The complexity of denotational descriptions makes them of little use to language users.
 Other than PL/I our text mentions no programming languages where denotational

semantics were employed.

3.5.3 Axiomatic Semantics
 Axiomatic semantics are based on mathematical logic.
 The primary use of axiomatic semantics is to prove that program fragments function

according to specification – program verification. This is called program proof of
correctness.

3.5.3.1 Assertions
 Logical expressions used in axiomatic semantics are called predicates or assertions.
 Assertions are used to define the precondition and the postcondition of a statement.

Example postcondition (enclosed in braces}
{𝑥𝑥 ≥ 0}sum=2*x+1; {sum≥1}

3.5.3.2 Weakest Preconditions
 The weakest precondition is the least restrictive precondition that will guarantee the

validity of the associated postcondition.
Example preconditions for the postcondition {sum>1}

o {x>0} sum=2*x+1; {sum>1}
o {x>10} sum=2*x+1; {sum>1}
o {x>50} sum=2*x+1; {sum>1}
o {x>1000} sum=2*x+1; {sum>1}

The weakest precondition that will guarantee the postcondition is {x>0}.

An inference rule is a method of inferring the truth of one assertion on the basis of the
values of other assertions.

𝑆𝑆1, 𝑆𝑆2,⋯ , 𝑆𝑆𝑆𝑆
𝑆𝑆

This rule states that if 𝑆𝑆1, 𝑆𝑆2,⋯, and 𝑆𝑆𝑆𝑆 are true, then the truth of 𝑆𝑆 can be inferred.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 20

3.5.3.3 Assignment Statements
 Let 𝑥𝑥 = 𝐸𝐸 be a general assignment statement and 𝑄𝑄 be its postcondition. The

precondition, 𝑃𝑃, is defined by the axiom.
𝑃𝑃 = 𝑄𝑄𝑥𝑥→𝐸𝐸

which means that 𝑃𝑃 is computed as 𝑄𝑄 with all instances of 𝑥𝑥 replaced by 𝐸𝐸.
Example: Find the weakest precondition given the following statement and postcondition.
a=b/2-1; {a<10}

1. b/2-1 < 10
2. b/2 < 11
3. b < 22

3.5.3.4 Sequences
 Let 𝑆𝑆1 and 𝑆𝑆2 be sequential statements and 𝑃𝑃1, 𝑃𝑃2, and 𝑃𝑃3 be assertions used either as

preconditions or postconditions. Consider the following
{𝑃𝑃1} 𝑆𝑆1 {𝑃𝑃2}
{𝑃𝑃2} 𝑆𝑆2 {𝑃𝑃3}

The inference rule for such a two-statement sequence is

{𝑃𝑃1} 𝑆𝑆1 {𝑃𝑃2}, {𝑃𝑃2} 𝑆𝑆2 {𝑃𝑃3}
{𝑃𝑃1}𝑆𝑆1; 𝑆𝑆2{𝑃𝑃3}

3.5.3.5 Selection
 Consider

if B then S1 else S2

The inference rule is:

{𝐵𝐵 ∧ 𝑃𝑃}𝑆𝑆1{𝑄𝑄}, {(¬𝐵𝐵) ∧ 𝑃𝑃}𝑆𝑆2{𝑄𝑄}
{𝑃𝑃}𝐢𝐢𝐢𝐢 𝐵𝐵 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑆𝑆1 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝑆𝑆2 {𝑄𝑄}

where 𝑃𝑃 is the precondition and 𝑄𝑄 is the postcondition.

Example
if x>0 then y=y-1 else y=y+1 {y>0}

Applying the postcondition to the then-clause.
y=y-1 {y>0} implies {y>1}

Applying the postcondition to the else-clause
y=y+1 {y>0} implies {y>0}

Because {y>1} implies {y>0} we use the {y>1} for the precondition.

3.5.3.6 Logical Pretest Loops
• Loops are more difficult because the number of iterations is known, in many cases, only

during execution.

Programming Languages Describing Syntax and Semantics
CMSC 4023 Chapter 3

 21

• Axiomatic semantics seeks to find a loop invariant that is equivalent to the inductive
hypothesis.

• The weakest precondition can be found by examining the loop invariant.
• The inference rule for computing the precondition for a while-loop is

(𝐼𝐼 ∧ 𝐵𝐵)𝑆𝑆{𝐼𝐼}
{𝐼𝐼}𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝐵𝐵 𝐝𝐝𝐝𝐝 𝑆𝑆 𝐞𝐞𝐞𝐞𝐞𝐞 {𝐼𝐼 ∧ (¬𝐵𝐵)}

where 𝐼𝐼 is the loop-invariant.

• The axiomatic description of a while-loop is:
{P} while B do S end {Q}

3.5.3.7 Program Proofs

The first example of a correctness proof is for a very short program, consisting of a sequence
of three assignment statements that interchange the value of two variables.

{x=A AND y=B}
t:=x;
x:=y;
y:=t;
{x=B AND y=A}

{x=A AND y=B}
t:=x;
{x=A AND t=A AND y=B}
x:=y;
{x=B AND t=A AND y=B}
y:=t;
{x=B AND t=A AND y=A}
{x=B AND y=A}

3.5.3.8 Evaluation
 Defining axioms or inference rules for all statements of programming languages has

proven to be difficult.
 Axiomatic semantics is a tool for research into program correctness proofs.
 Axiomatic semantics has limited usefulness for compiler writers and for language users.

	3 Describing Syntax and Semantics
	3.1 Introduction
	 syntax – expressions, statements, program units
	3.2 The General Problem of Describing Syntax
	3.2.1 Language Recognizers
	3.2.2 Language Generators

	3.3 Formal Methods of Describing Syntax
	3.3.1 Backus-Naur Form and Context-Free Grammars
	3.3.1.1 Context-free Grammars
	3.3.1.2 Origins of Backus-Naur Form
	3.3.1.3 Fundamentals
	3.3.1.4 Describing Lists
	3.3.1.5 Grammars and Derivations
	3.3.1.6 Parse Trees
	3.3.1.7 Ambiguity
	3.3.1.8 Operator Precedence
	3.3.1.9 Associativity of Operators
	3.3.1.10 An Unambiguous Grammar of if-then-else

	3.3.2 Extended BNF
	Note that the braces are not printed in bold to distinguish them from terminal symbols which are printed in bold.
	Note that the brackets are not printed in bold to distinguish them from terminal symbols which are printed in bold.
	Note that the parentheses are not printed in bold to distinguish them from terminal symbols which are printed in bold.
	3.3.2.1 Syntax Graphs

	3.3.3 Grammars and Recognizers

	3.4 Attribute Grammars
	3.4.1 Static Semantics
	3.4.2 Basic Concepts
	3.4.3 Attribute Grammars Defined
	3.4.4 Synthesized Attributes
	3.4.5 Inherited Attributes

	3.5 Describing the Meanings of Programs: Dynamic Semantics
	3.5.1 Operational Semantics
	3.5.1.1 The Basic Process
	3.5.1.2 Evaluation

	3.5.2 Denotational Semantics
	3.5.2.1 Two Simple Examples
	3.5.2.2 The State of a Program
	3.5.2.3 Expressions
	3.5.2.4 Assignment Statements
	3.5.2.5 Logical Pretest Loops
	3.5.2.6 Evaluation

	3.5.3 Axiomatic Semantics
	3.5.3.1 Assertions
	3.5.3.2 Weakest Preconditions
	3.5.3.3 Assignment Statements
	3.5.3.4 Sequences
	3.5.3.5 Selection
	3.5.3.6 Logical Pretest Loops
	3.5.3.7 Program Proofs
	The first example of a correctness proof is for a very short program, consisting of a sequence of three assignment statements that interchange the value of two variables.
	3.5.3.8 Evaluation

