
Programming Languages Preliminaries
CMSC 4023

 1

1. Preliminaries

1.1. Reasons for Studying Concepts of Programming Language
 Increased capacity to express ideas.

Computer programming language constructs define our ability to deliver products.
Example 1. C++ and Pascal versions of primes

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cmath>
class Prime {

int primecount;
bool isPrime(int c)
{ int factor=3;

int maxfactor=(int)ceil(sqrt((double)c));
while (factor<=maxfactor) {

if (c%factor==0) return false;
factor+=2;

}
return true;

}
public:

Prime(int n=100):primecount(n){}
void Find(ostream& o)
{ o << setw(5) << 2;

int candidate=3;
int count=1;
while (count<primecount) {

if (isPrime(candidate)) {
count++;
o << setw(5) << candidate;
if (count%10==0) o << endl;

}//end if
candidate+=2;

}//end while
}//end Find

};//end class Prime
int main()
{ Prime P;

P.Find(cout);
return 0;

}
Figure 1.1.1 C++ version of prime

Programming Languages Preliminaries
CMSC 4023

 2

program prime;
 var
 candidate:integer;

count:integer;
function isprime(c:integer):boolean;

 var
 factor:integer;

maxfactor:integer;
 begin{isprime}
 factor:=3;
 maxfactor:=round(sqrt(c));

while (factor<=maxfactor) and (c mod factor <> 0) do factor:=factor+2;
 isprime:=factor>maxfactor;
 end{isprime};
begin{prime}
 write(2:5);

count:=1;
 candidate:=3;
 while count<100 do
 begin
 if isprime(candidate) then
 begin

count:=count+1;
 write(candidate:5);
 if count mod 10 = 0 then writeln
 end{if};
 candidate:=candidate+2

end{while};
end{prime}.

Figure 1.1.2 Pascal version of prime

Programming Languages Preliminaries
CMSC 4023

 3

from math import sqrt
def isPrime(c) :

factor=3
maxfactor=sqrt(c)
while factor<=maxfactor :

if c%factor==0 :
return False
factor=factor+2

return True
primecount=100
print("%5d" % (2),end="")
count=1
candidate=3
while count<primecount :

if isPrime(candidate) :
count=count+1
print("%5d" % candidate,end="")
if count%10==0 :

print()
candidate=candidate+2

Figure 1.1.3 Python version of prime

Programming Languages Preliminaries
CMSC 4023

 4

Example 2. C++ and Pascal versions of Stack ADT.
#ifndef stack_h
#define stack_h 1
#include <iostream>
struct stackerror {

stackerror(char* m)
 { cerr << "\nI am the stack and I am " << m << ".";
 }
};
class stack {
 struct element {
 element* prev;
 char v;
 };
 element* tos;
 void kill(element* e)
 { if (!e) return;
 kill(e->prev);
 delete e;
 }
public:
 stack():tos(0) {}
 ~stack() {kill(tos);}
 bool full() {return 0;};
 bool empty(){return tos==0;}
 void push(char v)
 { if (full()) throw stackerror("full");
 element* e=new element;
 e->v=v;
 e->prev=tos;
 tos=e;
 }
 char pop(void)
 { if (empty()) throw stackerror("empty");
 element* e=tos;
 char v=e->v;
 tos=e->prev;
 delete e;
 return v;
 }
};
#endif

Figure 1.1.4 C++ version of Stack ADT: file stack.h

Programming Languages Preliminaries
CMSC 4023

 5

#include <iostream>
#include "stack.h"
int main()
{ stack s;
 s.push('e'); s.push('l'); s.push('b'); s.push('a');
 while (!s.empty()) cout << s.pop();
 cout << "\n";
 return 0;
}

Figure 1.1.5 C++ version of Stack ADT: file p00.cpp

program stack;
uses WinCrt;

 type
 stack_p=^stack_e;
 stack_e=record
 prev:stack_p;
 v:char;
 end{stack_e};
 var s:stack_p;
 function stackcreate:stack_p; begin stackcreate:=nil end;
 procedure stackdestroy(e:stack_p);
 var p:stack_p;
 begin{stackdestroy}
 while e<>nil do
 begin p:=e;
 e:=e^.prev;
 dispose(p)
 end{while}
 end{stackdestroy};

function stackempty(s:stack_p):boolean; begin stackempty:=s=nil; end;
procedure stackpush(var s:stack_p;v:char);

 var e:stack_p;
 begin{stackpush} new(e);
 e^.v:=v;
 e^.prev:=s;
 s:=e;
 end{stackpush};

Figure 1.1.6 Pascal version of stack ADT

Programming Languages Preliminaries
CMSC 4023

 6

function stackpop(var s:stack_p):char;
 var v:char; e:stack_p;
 begin{stackpop}
 if stackempty(s) then
 begin
 writeln('The stack is empty');
 stackpop:=chr(0)
 end
 else
 begin e:=s;
 v:=e^.v;
 s:=e^.prev;
 dispose(e);
 stackpop:=v
 end{if-else}
 end{stackpop};
begin{stack}

s:=stackcreate;
 stackpush(s,'e'); stackpush(s,'l'); stackpush(s,'b'); stackpush(s,'a');
 while not stackempty(s) do write(stackpop(s));
 writeln;
 stackdestroy(s);
end{stack}.

Figure 1.1.6 Pascal version of stack ADT (continued)

 Improved background for choosing appropriate languages.

Programming languages are designed for specific areas of application. Programmers
without broad experience prefer languages that they know rather than languages tailored
for an application.

Language Application Notes
Pascal Teaching Niklaus Wirth designed Pascal at Stanford University for

the express purpose of teaching students structured
programming.

C Operating
Systems

Dennis Ritchie designed C for the purpose of
implementing the UNIX operating system.

COBOL Business Grace Hopper designed the Common Business Oriented
Language to standardize military accounting programs.

FORTRAN Scientific
Programming

John Backus designed FORTRAN (FORmula TRANslation)
for the express purpose of efficiently implementing
computationally complex scientific programs

 Increased ability to learn new languages.

Programming Languages Preliminaries
CMSC 4023

 7

Programming languages have similar constructs. Most programming languages have only
two abstractions: data and control. Most programming languages have methods to
define data. Standard types are provided from which user defined types can be
constructed. Most programming languages have a fixed set of statements that alter the
flow of control. Examples of control statements include assignment-statement, if-
statement, case-statement, while-statement, for-statement, and a procedure-statement.

 Better understanding of the significance of implementation.

Compiler-writers are sought after by industry because of their broad and deep
understanding of operating system internals and machine organization. Compiler-writers
are known for their high productivity due to their encyclopedic understanding of the tools
of their trade.

 Better use of languages that are already known.

 Overall advancement of computing.
Language Purpose Notes
Ada Embedded

Systems
Military applications suffered from poor reliability in critical
applications. It was though that a strongly typed language would
greatly improve reliability. In large systems, many programmers
are employed to deliver an application in a reasonable time
period. Interfaces must be designed first. Ada supports separate
definition and implementation components, thus permitting an
interface to evolve while the interface remains constant.

C++ Productivity It has been recognized that testing occupies the largest part of
the development cycle. To reduce the amount of testing on a
new product, developers try to reuse existing similar code. Prior
to the advent of object-oriented programming, code was copied,
altered and applied to the new application. This process did not
reduce the amount of testing significantly because small changes
in code often dramatically affect the overall function of a
product. Object-oriented programming provides a reliable and
useful method of reusing existing code without alteration.
Testing function built from objects that are already tested
improves productivity.

Programming language is at the heart of computer science. Our ability to organize and
deliver programs depend on ideas embedded in a programming language.

1.2. Programming Domains

1.2.1. Scientific Applications
 FORTRAN
 many floating point arithmetic operations
 simple data structures, two dimensional arrays representing matrices

Programming Languages Preliminaries
CMSC 4023

 8

 counting loops
 efficiency

1.2.2. Business Applications
 COBOL
 reports
 decimal types to represent currency
 character data to support reports
 spreadsheets, representing automatic ledgers
 database managers for inventory and business modeling

1.2.3. Artificial Intelligence
 LISP
 symbolic rather than numeric computing
 lists support symbolic computing
 dynamic code creation

1.2.4. Systems Programming
 PL/S (IBM proprietary dialect of PL/I)
 C (for UNIX)
 efficient
 low-level constructs to interface with electronic hardware

1.2.5. Web Software
 XHTML
 Java
 JavaScript, PHP

1.3. Language Evaluation Criteria

1.3.1. Readability
 Readability is critical to code maintenance. Programmers must be able to

thoroughly understand code to find and fix errors and to add new capabilities.
The more clearly an algorithm is represented in code, the easier it is to
maintain.

 Programming languages are designed to implement a set of applications.
FORTRAN was designed to support scientific applications. COBOL was
designed to support business applications. Writing a business application in
FORTRAN may make it difficult to read.

1.3.1.1. Overall Simplicity
 A small number of basic components make a programming language easier

to understand than a language with a large number of components. A
language that has many ways to alter the flow of control, a rich set of
operators, many native data types and many ways to construct user-defined
types will be harder to understand than a language with the opposite

Programming Languages Preliminaries
CMSC 4023

 9

characteristics. Programmers are usually satisfied with a subset of a large
language.

 Several mechanisms to accomplish an operation diminish simplicity. For
example, in C a user can increment an integer several ways.

count = count + 1;
count += 1;
count++;
++count;

 Operator overloading makes a programming language more complex. For
example, it is possible in C++ for the adding operator to be defined for the
following types, integral types and floating-point types, integral types scalar
and vectors of the same type, and conformant vectors. The adding operator
can be defined to add an element to a list. The adding operator can be
defined to form the union of two sets. A programmer must be extremely
careful when so many meanings are assigned to the adding operator.

 Reasonable structure is required to make a language readable. Control and
data structures are obscured by the very simplicity of assembly language.

1.3.1.2. Orthogonality
 Orthogonality in a programming language means that primitive constructs

are independent and can be combined with other constructs according to the
rules defined for the construct. The assignment operator is nearly orthogonal
in C. However one array cannot be assigned to another array of the same
type and dimension. In a similar way, certain assembly languages lack
orthogonality in the many instructions used to add two integer values
depending on the location and size of the operands.

1.3.1.3. Data Types and Structures
 Data types that allow programmers to express values symbolically rather than

numerically improve readability. For example, the inclusion of a Boolean type
makes the second of the two statements more readable.

timeout = 1;
timeout = true;

Enumerated types are a logical extension of the Boolean type. Enumeration
constants red, green and blue are understood more easily than equivalent
integer constants 0, 1 and 2.

1.3.1.4. Syntax Design
 Identifier forms. Restricting the length of identifiers has been found to

reduce readability.
 Special words. Concise and lucid control flow reserve words help readability.

while, for, if, then, else and case are examples of well-chosen reserve words

Programming Languages Preliminaries
CMSC 4023

 10

that improve readability. In a similar way, well-chosen constructs for defining
data help readability.

Nested blocks belonging to iterative or alternative statements that use
identical syntax for the block are confusing. How often have we been notified
of the syntax error “missing end” or missing “}”

 Form and meaning.
Readability is improved when statements mean what they say. For example
a variable that is declared static in C means that a single instance of that
variable is allocated when the program starts and remains active although
perhaps not visible until the program exits. The declaration static also directs
the compiler to hide the name from the linker. When a function is declared
static the second meaning is the only meaning that is applicable.

1.3.2. Writability
 Writability is a measure of how easily a language can be used to create an

application. For example, COBOL is presumably suitable for writing business
applications. FORTRAN has been used to implement many scientific applications.

1.3.2.1. Simplicity and Orthogonality
 Programmers often limit themselves to a subset of a programming language.

A programmer will make fewer errors if well-known constructs are used.
Fewer errors will be made if constructs are orthogonal. Fewer errors will be
made if a construct is not dependent on neighboring constructs for its syntax
or meaning.

1.3.2.2. Support for Abstraction
 The degree to which a programming language can be used to implement

algorithmic and data abstraction determines its level of writability.
Programming languages that make it possible to represent standard
mathematical entities like sets and vectors are better than those
programming languages where it is more difficult to do so.

1.3.2.3. Expressivity
 Expressivity is a measure of the ease with which common operations are

expressed. count++ is easier to code than count = count + 1. A for-statement
is easier to code than equivalent statements using a while-statement.

1.3.3. Reliability
 A programming language supports reliability if it provides mechanisms to detect

and correct errors. Errors are less costly if they are removed earlier in the
development cycle. An error that is detected and removed at compilation is less
costly than one removed at run-time.

1.3.3.1. Type Checking
 Type checking is the process where types are validated during compilation.

The number and type of arguments are matched against corresponding

Programming Languages Preliminaries
CMSC 4023

 11

formal parameters. Operations are checked to see if operands are
acceptable. Boolean operators in Pascal can accept only Boolean operands.
Arrays cannot be assigned to structures.

1.3.3.2. Exception Handling
 Handling errors that occur at run-time often requires significant and difficult

design. The design task is reduced if a programming language has facilities to
generate and handle exceptions.

1.3.3.3. Aliasing
 Two names that refer to the same storage, perhaps even having different

types, is recognized as a source of errors that are difficult to find.

1.3.3.4. Readability and Writability
 Errors are more difficult to find in an application written in a language not

suited to the task. For example, a compiler written in COBOL would be most
difficult to maintain because COBOL is not naturally suited to the task of
writing a compiler. A COBOL compiler would be both difficult to read and
difficult to write.

1.3.4. Cost
 Cost of training programmers, simplicity and orthogonality apply. PL/I is difficult.

Pascal is easy.
 Cost of writing programs, C++ is less costly than C.
 Cost of compiling programs, Ada was costly because the language was large and

because the specification required extensive type checking.
 Cost of executing programs, PL/I is expensive because of the extensive run-time

environment required. FORTRAN is cheap because the run-time environment is
minimal and procedure prologs and epilogs are minimal.

 Cost of implementation. A programming language that requires a costly compiler
will likely fail to achieve wide spread popularity.

 Cost of maintaining programs. Because Pascal is designed around a single
compilation unit, it never achieved wide spread industrial applicability. Program
maintenance is impossible with a single compilation unit. The program cannot be
divided into manageable units. Only one programmer can be used to maintain a
single compilation unit.

 Cost of portability. C achieved wide spread acceptability, in part, because of
standardization.

1.4. Influences on Language Design

1.4.1. Computer Architecture
 Parallel versus serial hardware

Programming Languages Preliminaries
CMSC 4023

 12

Central Processing Unit (CPU)
Arithmetic and Logic Unit(ALU)

Control Unit (CU)

Memory
Instructions and Data

Output Input

Von Neumann
Bottleneck

Figure 1.4.1 The von Neumann bottleneck

 Functional versus imperative programming
 Logic versus imperative programming

1.4.2. Programming Design Methodologies
 Structured programming (no gotos)
 Top-down design
 Step-wise refinement (compilation errors still reflect waterfall development

strategies)
 Data flow design
 Data abstraction
 Object-oriented design

1.5. Language Categories
 Imperative (Pascal) serial, sequential, detailed specification
 Functional (Lisp) operations are specified by function alone, no side-effects, no data

outside local data
 Logic (Prolog), rule-based, resolution engine
 Object-oriented (Smalltalk), classes, inheritance, polymorphism
 Mark up languages (HTML) are not programming languages, they do not specify

computation

1.6. Language Design Trade-offs
 reliability and execution cost
 APL: expressivity and readability
 flexibility and safety

Programming Languages Preliminaries
CMSC 4023

 13

1.7. Implementation Methods

Compiler

Compiler

Virt
ual

VB .NET

Virtual C#

Computer

Computer

M
ac

roinstruction Interpreter

.NET common

language run time
Scheme Interpreter

Operati ng
Syst em

com
m

and
in terpre ter

Assem
bler

Ada Compiler

Ja
va

 V
irt

ua
l M

ac
hi

ne
C

co
m

pi
le

r

VB .NET

C# Virtual Scheme computer

Vi
rt

ua
l C

Co
m

pu
te

r
Ja

va
 C

om
pi

le
r

Virtual Ada computer

Virtual assem
bly

language
com

puter

Operating System

Ba

re
Machine

Vi
rt

ua
lJ

av
a

co
m

pu
te

r

Figure 1.7.1 Layered interfaces

 Layers provide increasingly powerful levels of abstraction.
 At the lowest level the bare machine projects an abstraction consisting of detailed

and minute electronic operations
 Macroinstructions allow other programs and users to understand the computer as an

instruction set architecture
 The operating system manages all electronic hardware and presents a virtual

interface for all facilities under its management
 Programming languages, including assembler, constrain the user to think of the

capabilities of a computer through the lens of the language definition.

Programming Languages Preliminaries
CMSC 4023

 14

1.7.1. Compilation

Lexical Analyzer
(Scanner)

Code Generator

Optimizer
(Code Improver)

Intermediate Code Generator

Semantic Analyzer
(Type Checker)

Syntax Analyzer
(Parser)

Source

Relocatable
Object

Error Manager Symbol Table

Characters

Tokens

Syntax Tree

Annotated Syntax Tree

Intermediate Language Code

Low-level Intermediate Language Code

Relocatable Object Module

Figure 1.7.1 The compilation process

 The source is seen as a stream of characters. The Lexical Analyzer recognizes groups
of tokens defined by regular expressions. The Lexical Analyzer in concert with the
symbol table replaces each token with an equivalent non-negative integer value. A
stream of integer tokens is sent to the Syntax Analyzer.

 The Syntax Analyzer determines if the input program is a sentence in the grammar for
the programming language. The Syntax Analyzer builds a parse tree of the entire
program.

 The Semantic Analyzer decorates the parse tree with type annotations to determine
if the semantic rules have been observed.

 The Intermediate Code Generator produces an intermediate language form of the
program. Examples of intermediate languages include P-Code and Java Byte Code.

 Ordinarily the Optimizer is optional. However, most compilers have a significant
optimization phase. The Optimizer employs heuristics known to produce code that
executes faster. Really, the Optimizer merely improves code: it does not produce
optimal code in the mathematical sense of the word.

Programming Languages Preliminaries
CMSC 4023

 15

 The Code Generator selects instructions for the target machine. Some entities,
functions, variables, are defined in other compilation units. The linkage editor, not
shown in this diagram, resolves undefined external references. The Code Generator
may also perform one last phase of optimization called peep-hole optimization. The
result of compilation is called a relocatable object module. The relocatable means
that all references to instructions and data can be relocated because they are relative
to a value stored in a register.

1.7.2. Pure Interpretation

Pure Interpreter

Source

Input Output

Figure 1.7.2 Pure interpretation

 A Pure Interpreter executes the source program directly. The Pure Interpreter acts
as a compiler, operating system, and electronic hardware combined. The Symbol
Computer created at Iowa State University is an example of a pure interpreter.

Programming Languages Preliminaries
CMSC 4023

 16

1.7.3. Hybrid Implementation Systems

Input Output

Lexical Analyzer
(Scanner)

Interpreter

Intermediate Code Generator

Semantic Analyzer
(Type Checker)

Syntax Analyzer
(Parser)

Source

Error Manager Symbol Table

Characters

Tokens

Syntax Tree

Annotated Syntax Tree

Intermediate Language Code

Figure 1.7.3 Hybrid implementation system

 A hybrid interpreter accepts intermediate language code rather than pure source or

pure machine code. Examples of hybrid interpreters include the p-code interpreter for
Pascal and Basic and the Java Byte Code machine for Java programs.

1.8. Programming Environments
 An integrated development environment (IDE) first made commercially available by

Borland International in Turbo Pascal ® is an example of integrating the editor,
compiler, and debugger in a single package. Other IDEs include Microsoft’s Visual
Studio and Common Desktop Environment for UNIX.

	1. Preliminaries
	1.1. Reasons for Studying Concepts of Programming Language
	1.2. Programming Domains
	1.2.1. Scientific Applications
	1.2.2. Business Applications
	1.2.3. Artificial Intelligence
	1.2.4. Systems Programming
	1.2.5. Web Software

	1.3. Language Evaluation Criteria
	1.3.1. Readability
	1.3.1.1. Overall Simplicity
	1.3.1.2. Orthogonality
	1.3.1.3. Data Types and Structures
	1.3.1.4. Syntax Design

	1.3.2. Writability
	1.3.2.1. Simplicity and Orthogonality
	1.3.2.2. Support for Abstraction
	1.3.2.3. Expressivity

	1.3.3. Reliability
	1.3.3.1. Type Checking
	1.3.3.2. Exception Handling
	1.3.3.3. Aliasing
	1.3.3.4. Readability and Writability

	1.3.4. Cost

	1.4. Influences on Language Design
	1.4.1. Computer Architecture
	1.4.2. Programming Design Methodologies

	1.5. Language Categories
	1.6. Language Design Trade-offs
	1.7. Implementation Methods
	1.7.1. Compilation
	1.7.2. Pure Interpretation
	1.7.3. Hybrid Implementation Systems

	1.8. Programming Environments

