

Project:	<p>Alter the MARIE Instruction Set Architecture to include two new instructions designed to improve the performance of your binary search and exponentiation programs. Add a divide-instruction for the binary search program and a multiply-instruction for the exponentiation program.</p> <p>Design, implement, and test an assembler for the new Instruction Set Architecture that was discussed above. Your assembler accepts a text file and produces a binary file suitable for execution by the ISA interpreter that you will design and build in project p03.</p> <p>Test your assembler by modifying the binary search and exponentiation programs you created in project p01 to include the new instructions defined in the new ISA.</p> <p>Test your assembler by assembling the two New Architecture programs.</p>
Deliverables:	<p>Copies of the source for the following five deliverables are included in the document that you submit to your instructor.</p> <p>Name: The document is named CRN-author1-author2-p02.docx. For example, if the team consisting of Ms. Fiona Faultless and Ms. Petunia Perfect, enrolled in section CRN 11068, submits project p02, the file name of their document would be 11068-Faultless-Perfect-p02.docx. The team must attach their document to the note sent to your instructor. Please employ the template, http://cs2.uco.edu/~trt/cs3833/p02Template.docx to document your interpreter.</p>
1.	<p>A complete description of the new Instruction Set Architecture presented in tabular form using Table 4.2 on page 238 as a guide and including all of the instructions in the new architecture. Please include a figure similar to FIGURE 4.10 also that specifies the instruction format.</p>
2.	<p>An assembler that reads a program that conforms to the ISA defined in project p01 and produces a binary executable file that can be executed by the interpreter that you will design in project p03</p> <p>File Names: Store all the source files that are required to create the executable in a folder named p02. Name the executable mas. Name the makefile used to create the executable makemas.</p> <p>Compilation Error Penalty: No credit is assigned to any submission that fails to produce an executable file. Compilation warnings will be severely penalized.</p>

<p>2. Continued</p>	<p>All source files must contain an author identification comment similar to:</p> <pre>//----- //Author1: Mr. Charles Babbage //Student ID: *00000000 //E-Mail: cbabbage@uco.edu //Author2: Ms. Ada Lovelace //Student ID: *00000001 //E-Mail: alovelace@uco.edu //Course: CMSC 3833 – Computer Organization II //CRN: 10931, Autumn, 2019 //Project: p02 //Due: September 16, 2019 //Account: tt001 //-----</pre> <p>Submit only the source files that you have changed. It is likely, though not assured, that the files you will have altered are:</p> <ul style="list-style-type: none"> • masopcodes.h • maspar.y • maslex.l
<p>3.</p>	<p>File NA-BS.mas. This file exploits the new ISA to implement a binary search. When this file is assembled the executable performs a binary search on the new ISA MARIE simulator that you will create in project p03. Store this file in folder p02.</p> <p>Your file NA-BS.mas must have an author identification comment that is similar to:</p> <pre>/Author1: Mr. Charles Babbage /Student ID: *00000000 /E-Mail: cbabbage@uco.edu /Author2: Ms. Ada Lovelace /Student ID: *00000001 /E-Mail: alovelace@uco.edu /Course: CMSC 3833 – Computer Organization II /CRN: 10931, Autumn, 2019 /Project: p01 /Due: September 16, 2019 /File: M-BS.mas</pre>
<p>4.</p>	<p>Time Complexity Analysis for the new architecture MARIE binary search program. Find $T(n)$ where n is the number of values to search and $T(n)$ is the number of instructions executed to find the key value.</p>
<p>5.</p>	<p>File NA-EX.mas. This file exploits the new ISA to implement an exponentiation program that finds a^b where a and b are both positive integers and $a^b < 2^{15}$. When this file is assembled the executable exponentiates a^b on the new ISA MARIE simulator that you will create in project p03. Store this file in folder p02. Your file NA-EX.mas must have an author identification comment that is similar to that described above.</p>

6.	Time Complexity Analysis for the MARIE exponentiation program implemented by exploiting the new ISA. Find $T(n)$ where n is a function of a and b , and $T(n)$ is the number of instructions executed to find a^b .
Electronic Submission:	You and your partner make a single submission. Attach your document containing the description and sources for your assembler to a note to me trturner@uco.edu .

Scoring Block			
Section	Available	Earned	Explanation
New Instruction Set Architecture including a table similar to Table 4.2 and a figure similar to FIGURE 4.10	5	5	
Marie Assembler (mas)	25	25	
New Architecture Binary Search	5	5	
New Architecture Binary Search Time Complexity	5	5	
New Architecture Exponentiation	5	5	
New Architecture Exponentiation Time Complexity	5	5	
Total	50	50	