<<<< USERNAME:tt FILENAME: mex.cpp >>>>

//File mex reads the executable file having a suffix of .mex
//and executes the instructions in the file.

//Author: Thomas R. Turner
//E—-Mail: trturnerfuco.edu
//Date: November, 2015

#include <iostream>
#include <fstream>
ffinclude <iomanip>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;

S e S
//Application Include Files

S —— T
T
//File Global Variables
S e sl
static short M[4096]; //MARIE Memory

static short MAR=0; //MARIE Memory Address Register
static short PC=0; //MARIE Program Counter

static short MBR=0; //MARIE Memory Buffer Register
static short AC=0; //MARIE Accurmulator

static unsigned char InReg=0; //MARIE Input Register

static unsigned char OutReg=0; //MARIE Output Register

static short IR=0; //MARTE Instruction Register
static int icount; //Number of instructions executed
S e

void ReadTrace (ostream& o,const string t,int twv)
{

o << endl;

o << t << getfill (" 7)) << twv;

}

o

//Function Trace prints the registers and the current instruction to the
file

A
void Trace (ostreams o,unsigned short opcode,unsigned short operand)
{ static string mnemonicl[i=
{"JIns" , "Load" ,"Store”,"Add" ,"Subt","Input","Output"
,"Halt" ,"Skipcond","Jump" , "Clear","AddI", "JumpI", "Loadl™
, "StoreIl"

} -

r
<< endl ;

o

o << endl ;

o << "opcode=" << setw(l) << hex << opcode;

o << " ll; '

o << "mnemonic=" << setw (8} << setfill(’ ‘) << mnemoniclecpcode];
[e) << n "’.

o << "operand=" << setw(4) << setfill(/0’) << hex << operand;
o << endl;

o << "PC =" << setw(4) << setfill(’0’) << hex << PC;

e} < < " ll;

o << "MAR=" << setw(4) << setfill(70’)} << hex << MAR;

O << " |'|';

o << "MBR=" << setw(4) << setfill {07} << hex << MBR;

o << "oTe

<<<< USERNAME:tt FILENAME: mex.cpp >>>>

(o) << " |'l;
0o << "IR =" << setw(4) << setfill(’07)
o << " 'Il;
o << "InReg =" << getw(4) << setfill (’
eg};
O << " ll;
o << "OutReg =" << getw(4) << setfiil (0"} <<
tReqg) ;
}
f e e e e

//Function Fetch obtains the next instructicon and

/ /opcode and operand.

e e

void Fetch(unsigned shorté& opcode,unsigned shorte

{ unsigned short code=M[PC]&0xF000;
opcode=code>>12;
unsigned short rand=MipPC]&Ox0OFTF;
operand=rand;

void Interpret (ostream& o)
{ enum mnemonic
{JInS
, Halt
s Storel
b
unsigned short opcode;
ction
unsigned short operand;
uction
Fetch (opcode, operand) ;
Trace (0o, opcode, operand) ;
while (opcodel=Halt) {
PC++;
switch (opcode) {
case JInS:
break;
case Load:
AC=M[operand] ;
break;
case Store:
M[operand]=AC;
break;
case Add:
AC=AC+M[operand] ;
break;
case Subt:
AC=AC-Mloperand];
break;
case Input:
cout <<
cout << "Enter an integer
cin >> InReqg;
AC=1InReg;
break;
case QOutput:
OutReg=AC;
cout << "Output= " <<
cout << endl;
break;
case Halt:
break;
case Skincond:

, Load ; Store
s Skipcond, Jump

,Bdd
Clear

endl ;

wrn

<< hex << IR;

07) << hex << {(unsigned short int)InR

hex << ({unsignred shcrt int)Ou

operand)

; Subt
, AddT

, Input
s Jumpl

FOutput
, LhoadT

//Opcode for the current instru

//Operand for the current instr

i, O<=i<=255. ";

<< QutReg << "/ W;

<<<< USERNAME:tt Fll__,ENAME: mex.cpp >>>>

case 0: 1f (AC<() PC=PC+1;
break;
case 1: if (AC==0) PC=PC+1;
break;
case 2: 1f (AC>0) PC=PC+1;
break;
default: //throw an exception
break;
1/ /end switch
break;
case Jump:
PC=operand;
break;
case Clear:
AC={;
break;
case AddI:
AC=AC+M[M[operand]l];
break;
case Jumpl:
FC=M[M[operand]l];
break;
case Loadl:
AC=M[M[operand]];
break;
case Storel:
MIM[operand] |=AC;
break;

}

icount++; //Increment the number of instructions executed
Fetch {opcode, operand) ;
Trace {0, opcode, ocperand) ;

}

o << endl << "icount=" << dec << icount;
o << endl;

struct FileBException {
FileException (const char* fn}
{ cout << endl;
cout << "File " << fn << " could not be opened.";
cout << endl;

};

struct CommandLineException {
CommandiLineException{int m,int a)
{ cout << endl;
cout << "Too many arguments on the command line.";
cout << endl;

cout << m << " argument {(5) are permitted on the command line.";
cout << endl;
cout << a << " argument (s) appeared on the command line.";

cout << endl;

|
e
//InvalidsuffixException

<< USERNAME: (it FILENAME: mex.cpp >>>>

InvalidsuffixException (char* fn,const char* s)

{ cout << endl;
cout << "File name " << "\"" << fn << "AMY;
cout €< " must have the suffix " << "\"" << 5 << "\"¥";

cout << endi;

[/e e
//Function ValidSuffix determines if string fn has string s as a suffix.
e e
bool Validsuffix (char* fn,const char* s)
{ char* p=strstr{fn, s8);

if (!p) return false;

int sp=strlen(fn)-—-strlen(s);

int cp=p-—fn;

if (cpl!=sp) return false;

return true;
}
e s
//Function Prefix removes the
Tt s
void Prefix (char* p,char* s)
{ int l=strlen(s)-—-4;

strnepy (p,s,1);

pli1=0;
}
it

int main(int argc, char* argv/[])

{
try |

char 1fnizZ55];
switch (argec) |

case 1: //Prompt for the input file name
cout << "Enter the input file name. ";
cin >>» ifn;
break;
case 2: //Read the input file name
strepy{(ifn,argv[1]);
break;
default:
throw CommandLineBxception(l,argc—-1);
break;
1
o
//Validate the input file name and create ocutput file having tThe same
//prefix as the input file name but with a ".lst"™ suffix.
e
if (!'Validsuffix(ifn, ".mex"})) throw InvalidSuffixException(ifn,".mex"};
char ofn[255]; //Allocate storage for the output filename
Prefix{ofn, 1fn); //Create the output filename prefix
strcat (ofn, ".1st"); //Append the suffix the output filename prefix
ofstream o(cfn); if (!o) throw FileException (ofn};

FILE* i=fopen(ifn,"rb"); if (!i) throw FileException(ifn};

S

//Read the binary file named on the command line into memory M.
//Assign the initial value of the program counter, PC, also stored

//in the binary file.

<<<< USERNAME:tt FILENAME: mex.cpp >>>>

}

}

unsigned short int length=0;

int re=fread(&origin,sizeof (short),1,1i);
ReadTrace (o, "rc",rc);
ReadTrace (o, "origin",origin) ;

o << endl;

re=fread (&length, sizeof (short),1,1);
ReadTrace (o, "rc",xrc);
ReadTrace (o, "length", length) ;

o << endli;

re=fread(&M[origin],sizecof {(short), Llength, i) ;
ReadTrace (o, "rc",rc) ;

for (int address=origin;address<origintiength;address++) {
o << endl;

<< hex << setw({4) << sgsetfill (’/0’) << address;

< < n n ;

<< hex << setw({d) << setfili(’0') << M[address];

000

}
o << setfill (" ");
0 << endi;

PC=crigin; //Assign the address of the first instruction
Interpret (c) ; //Begin interpreting the program
catch (...} {

cout << endl;

cout << "Program terminated!";
cout << endl;

cout << "I won’'t be back!l";
cout << endil;

exit (EXIT_FAILURE) ;

return 0;

