<<<< USERNAME:it FILENAME: maspar.y >>>>

%1

//File maspar.y containg a specification for MARIE Assembler Language
//defined by Thomas R. Turner.

A e e e e e e e e e e e e e e e e e e e
//Author: Thomas R. Turner

/S /E—Mail: trturner@uco.edu

//Date: August, 2016

e

//Copyright August, 2016 by Thomas R. Turner.

/ /Do not reproduce without permission from Thomas R. Turner.

#finclude <iostream>

#include
#include
finclude

<fstream>
<iomanip>
<string>

#include <cstdio>
using namespace std;

#incilude "maslex.h"
#include "maspar.h"
#include "masopcodes.h"
#include "masutilities.h™
#include "masliist.h"
#include "maslabel.h"
#include "masfiles.h"

void yvverror {const char* m);
void MemoryPrint {(ostream& o)
void MemoryTitle (ostream& o)
void MemoryWrite (FILE* £);

LTI T}

//Files specific to the MARIE
//Assembler

extern Files F;

extern int Line;
extern int Col;

//Address of the next instruction
//Address of the first instruction
//Number of words (lL6-kit) stored

//in MARIE' s memory

//MARIE' s menory

//Label Table for resclwving the addresses

unsigned short int address=0;
unsigned short int origin=0;
unsigned short int length=0;

unsigned short int Memoxry[4096];
Label ILT;

of labels

%}

Sunion {

string* token;

unsigned short integer;

}
stype
%token <token>
$token <tcken>
Ztoken <taoken>

<integer> operand
TOKEN_BEGIN
COMMA

RESERVE WORDS

<<<< USERNAME:tt FILENAME: maspar.y >>>>

$token <token> LOAD
$token <token> STORE
Stoken <tcken> ADD
Stoken <token> SUBRT
Stoken <token> INPUT
$token <token> QUTPUT
Stoken <tocken> HALT
Stoken <token> SKIPCOND
stoken <token> JUMP
%token <tcken> CLEAR
%token <token> ADDTI
Stoken <tcken> JUMP I
stoken <token> T.OADT
token <token> STORET
Stoken <tocken> DEC
%token <tocken> HEX
Ztoken <tcken> ORG
$token <token> END
%token <token> REGULAR EXPRESSIONS
$token <tocken> IDENTIFIER
%token <tcken> HEXLIT
stoken <token> TOKEN_END
%%

program

statement_list

{ F.tfs << endl <<
length=address—origin;
F.tfs << endl << "length
MemoryPrint (F.tfs) ;
LT.Print (F.t£fs);
MemoryWrite(F.e);

<< hex

}
statement_list:
statement
{F.tfs << endl
}
statement_list:
statement_list
{F.tfs << endl
}
statement:
directive
{F.tfs << endl
}
statement:
labeled item
{F.tfs << endl
}
statement:
item
{F.tfs << endl
}
directive:
ORG HEXLIT
{F.tfs << endl
F.tfs << endl;
F.tfs << endl << (*$2)
origin=hextoint (¥32);
address=origin;
F.tfs << endl <<
}
labeled_item:
label item
{F.tfs << endl <<
1

<< "H#002 statement_list

statemant
<< "#003 statement_list

<< "#004 statement

<< "#0605 statement

<< "#006 statement

<< "#007 directive

<< <<

"origin=" << origing;

—=> QORG HEXLIT ("

hexteoint (*3$2)

"4#001 program —> statement list";

<< length;

—> statement";

—-> gstatement_list

—> directive";

—> labeled_item";

—> item";

<<

<< "

"#008 labeled _item —> label item";

(*S2)

statement™;

< < II)H;

decimal®™;

<<<< USERNAME:it FILENAME: maspar.y >>>>

IDENTIFIER COMMA
{F.tfs << endl <<

"#009 label —> identifier(" << (*3$1) << ")" <<«

LT.Define (*31, address, Memory) ;

}
item:
instruction
{F.tfs << endl <<
F.£fs << endl <<
address++;
I3
item:
data_definition
{FP.tfs << endl <<
address++;
}
instruction:
JNS operand
{F.tfs << endl <<

"#010 item —> instructicn ";
"address=" << address;

"#011 item —> data_definition";

"#012 instruction -> JNS operand";

unsigned short operation=ocp_jns! ($2);

F.tfs << endl <<
F.tfs << dec;

"instruction=" << setw(4) << hex << operation;

Memory [address]=operation;

}

instruction:
LOAD operand
{F.tfs << endl <<

"#013 instruction —> LOAD operand";

unsigned short operation=op_lcadl ($2);

F.tfs << endl <<
F.tfs << dec;

"instruction=" << setw(4) << hex << operation;

Memory [address] =cperation;

}

instruction:
STCRE operand
{F.CLfs << endl <<

"#0i4 instruction —> STORE operand";

unsigned short operation=op_store| (52);

F.Efs << endl <<
F.tfs << decg;

"instruction=" << setw({d) << hex << operation;

Memory [address]=operation;

}

instruction:
ADD operand
{F.tfs << endl <<

"#015 instruction —-> ADD operand";

unsigned short operation=op_add| ($2);

F.tfs << endl <<
F.tfs << dec;

"instruction=" << setw({4} << hex << coperation;

Memory [address]=operation;

}

instruction:
SUBT operand
{F.tfs << endl <<

"#016 instruction —> SUBT operand";

unsigned short operation=ocp_subt]| ($2);

FP.Efs << endl <<
F.tfs << dec;

"instruction=" << setw(4) << hex << operation;

Memory [address]=operation;

}
instruction:
INPUT
{F.tfs << endl <<

"#017 instruction -—> INPUTY;

unsigned short cperation=op__input;

F.tfs << endl <<

"instruction=" << setw(4) << hex << operation;

Memory [address]=operation;

F.tfs << dec;
}

instruction:
OUITPITT

<<<< USERNAME:{t FILENAME: maspar.y >>>>

unsigned short operation=op_output;
F.tfs << endl << "instruction=" << setw(4) << hex << operation;
F.tfs << dec;
Memory [address]=cperation;
1
instruction:
HALT
{F.tfs << endl << "#019 instruction —->» HALT";
unsigned short operation=op_halt;
F.tfs << endl << "instruction=" << setw(4) << hex << operation;
F.tfs << dec;
Memory [address]=coperation;
}
instructicon:
SKIPCOND operand
{F.tfs << endl << "#020 instruction —> SKIPCOND operand”;
unsigned short operation=op_skipcond| (32);
F.tfs << endl << "instruction=" << setw(4) << hex << operation;
F.tfs << dec;
Memory [address]=cperation;
}
instruction:
JUMP operand
{F.tfs << endl << "{#021 instruction -—> JUMP operand";
unsigned short operation—op_Jjump]| ($2);
F.tfs << endl << "instruction=" << setw(4) << hex << operation;
FP.tfs << dec;
Memory [address]=coperation;
}
instruction:
CLEAR
{F.tfs << endl << "#022 instruction —> CLEAR";
unsigned short operation=op_clear;
F.tfs << endl << "instruction=" << setw(4) << hex << operation;
F.tfs << dec;
Memory [address]=operation;
}
instruction:
ADDI operand
{F.tfs << endl << "#023 instruction —> ADDI operand";
unsigned short operation=op_addi]| ($2);
F.tfs << endl << "instruction=" << setw(d4) << hex << operation;
F.tfs << dec;
Memory {address]=operation;
}
instruction:
JUMPI operand
{F.tfs << endl << "#024 instruction —-> JUMPI operand";
unsigned short operation=op__jumpil] {($2);
F.tfs << endl << "instruction=" << setw(4) << hex << operation;
F.tfas << dec;
Memory [address]=operation;
}
instruction:
LOADT operand
{F.tfs << endl << "$#025 instruction -> LOADI ocperand";
unsigned short operation=op_lcadi]| ($2);
F.tfs << endl << "instruction=" << setw{4) << hex << operation;
F.tfs << dec;
Memory [address] =coperation;
}
instruction:
STOREI operand
{F.tfs << endl << "#026 instruction —> STOREI operand"™;
nngianaed shonrt ovneration=on stareil (52):

<<<< USERNAMIE:tt FILENAME: maspar.y >>>>

F.tfs << dec;
Memory [address] =operation;
}
instruction:
END
{F.tfs << endl << "#027 instruction -> END";
}
operand:
HEXLIT
{F.tfs << endl << "#028 operand —> HEXLIT (" << (*¥851) << ")7";
$S=hextoint (*51) ; '
}
operand:
IDENTIFIER
{F.tfs << endl << "#029 coperand —> IDENTIFIER";
$8=LT.Reference(*$1, address) ;
}
data_definition:
HEX HEXLIT
{F.tfs << endl << "#030 data_definiticon —> HEX HEXLIT (" << (¥$2)
F.tfs << endl << (*$2) << "=" << hextoint (*¥52) << " decimal";
Memory [address]=hextoint (*$2);
}
data_definition:
DEC HEXLIT
[F.tfs << endl << "#031 data _definition —> DEC HEXLIT(" << (*$2)
F.tfs << endl << (*382) << "=" << dectoint (*5$2) << " decimal";
Memory [address]=decteoint {(*52);

void yyerror {(const char* m)
{ cout << endl
<< "line (" << Line << "} col (" << Col << M) " << my;
cout << endl;
}
void MemoryTitle (ostream& o)
{ o << endl;
o << "adr";
for (int a=0;a<lé6;at+) {
O << m “;
o << "ag";
o << setfill{(0f) << hex << setw(2) << a;
¥
o << setfill(’ 7} << dec;
}
void MemoryPrint (ostream& o)
{ MemoryTitle (o) ;
for {(int a=origin;a<origintlength;at++) {
if (a%le==0) {
o << endl;
o << setw(3) << setfill("0’) << hex << a;
¥
o << n “’.
o << setw({d) << setfill(’0’) << hex << Memoryl[a];
}
o << endl;
o << setfill (" ") << dec;
}
void MemoryWrite (FILE* f)
{
fwrite (&origin, sizeof{origin),1l,f);
.t fa << endl << "oricin = " << hex << origin << endl:

<< “)ll;

< < 'I'I)Il;

<<<< USERNAME:tt FILENAMIE: maspar.y >>>>

F.tfs << endl << "length = " << hex << address << endl;
for (int a=origin;a<origint+length;a++) {
fwrite (&Memorylal, sizeof(short int), 1, £);
.tfs << endl;
.tfs << setw({d) << hex << a;
.tfs << "™ "’.
.tfs << setw(d4) << hex << Memorylal;

e I e

