
Computer Organization II 9.5 Alternative Parallel Approaches
CMSC 3833 Lecture 67

 1

9.5 Alternative Parallel Approaches
• Some people argue that real breakthroughs in computational power-- breakthroughs

that will enable us to solve today’s intractable problems-- will occur only by
abandoning the von Neumann model.

• Numerous efforts are now underway to devise systems that could change the way
that we think about computers and computation.

• In this section, we will look at three of these: dataflow computing, neural networks,
and systolic processing.

9.5.1 Dataflow Computing

• Von Neumann machines exhibit sequential control flow: A linear stream of
instructions is fetched from memory, and they act upon data.

• Program flow changes under the direction of branching instructions.
• In dataflow computing, program control is directly controlled by data dependencies.
• There is no program counter or shared storage.
• A data flow graph represents the computation flow in a dataflow computer.
• Its nodes contain the instructions and its arcs indicate the data dependencies.

Figure 9.11 Dataflow Graph Computing
𝑁𝑁 = (𝐴𝐴 + 𝐵𝐵) ∗ (𝐵𝐵 − 4)

• Data flows continuously and is available to multiple instructions simultaneously

Computer Organization II 9.5 Alternative Parallel Approaches
CMSC 3833 Lecture 67

 2

• When a node has all of the data tokens it needs, it fires, performing the required
operation, and consuming the token.

Figure 9.11.1 Dataflow Graph Computing – A Node Firing

• The result is placed on an output arc.

Computer Organization II 9.5 Alternative Parallel Approaches
CMSC 3833 Lecture 67

 3

• A dataflow program to calculate 𝑛𝑛! and its corresponding graph are shown below.

(initial j <- n; k<-1;
while j > 1 do

new k <- k*j;
new j <- j-1;

return k)

Figure 9.12 Dataflow Graph Corresponding to the Program to Calculate 𝑛𝑛!

• The architecture of a dataflow computer consists of processing elements that
communicate with one another.

• Each processing element has an enabling unit that sequentially accepts tokens and
stores them in memory.

• If the node to which this token is addressed fires, the input tokens are extracted from
memory and are combined with the node itself to form an executable packet.

• Using the executable packet, the processing element’s functional unit computes any
output values and combines them with destination addresses to form more tokens.

• The tokens are then sent back to the enabling unit, optionally enabling other nodes.
• Because dataflow machines are data driven, multiprocessor dataflow architectures

are not subject to the cache coherency and contention problems that plague other
multiprocessor systems.

Computer Organization II 9.5 Alternative Parallel Approaches
CMSC 3833 Lecture 67

 4

9.5.2 Neural Networks
• Neural network computers consist of a large number of simple processing elements

that individually solve a small piece of a much larger problem.
• They are particularly useful in dynamic situations that are an accumulation of

previous behavior, and where an exact algorithmic solution cannot be formulated.
• Like their biological analogues, neural networks can deal with imprecise, probabilistic

information, and allow for adaptive interactions.
• Neural network processing elements (PEs) multiply a set of input values by an

adaptable set of weights to yield a single output value.
• The computation carried out by each PE is simplistic-- almost trivial-- when compared

to a traditional microprocessor. Their power lies in their massively parallel
architecture and their ability to adapt to the dynamics of the problem space.

• Neural networks learn from their environments. A built-in learning algorithm directs
this process.

• The simplest neural net PE is the perceptron.
• Perceptrons are trainable neurons. A perceptron produces a Boolean output based

upon the values that it receives from several inputs.

Figure 9.13 A Perceptron
• Perceptrons are trainable because the threshold and input weights are modifiable.

Computer Organization II 9.5 Alternative Parallel Approaches
CMSC 3833 Lecture 67

 5

• In this example, the output 𝑍𝑍 is true (1) if the net input, 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + . . . + 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛is
greater than the threshold 𝑇𝑇.

Figure 9.13.1 Training a Perceptron
• Perceptrons are trained by use of supervised or unsupervised learning.
• Supervised learning assumes prior knowledge of correct results which are fed to the

neural net during the training phase. If the output is incorrect, the network modifies
the input weights to produce correct results.

• Unsupervised learning does not provide correct results during training. The network
adapts solely in response to inputs, learning to recognize patterns and structure in
the input sets.

• The biggest problem with neural nets is that when they consist of more than 10 or 20
neurons, it is impossible to understand how the net is arriving at its results. They can
derive meaning from data that are too complex to be analyzed by people.

o The U.S. military once used a neural net to try to locate camouflaged tanks in
a series of photographs. It turned out that the nets were basing their
decisions on the cloud cover instead of the presence or absence of the tanks.

• Despite early setbacks, neural nets are gaining credibility in sales forecasting, data
validation, and facial recognition.

Computer Organization II 9.5 Alternative Parallel Approaches
CMSC 3833 Lecture 67

 6

9.5.3 Systolic Arrays
• Where neural nets are a model of biological neurons, systolic array computers are a

model of how blood flows through a biological heart.
• Systolic arrays, a variation of SIMD computers, have simple processors that process

data by circulating it through vector pipelines.

Figure 9.14 b) A Systolic Array Processor
• Systolic arrays can sustain great throughout because they employ a high degree of

parallelism.
• Connections are short, and the design is simple and scalable. They are robust,

efficient, and cheap to produce. They are, however, highly specialized and limited as
to the types of problems they can solve.

• They are useful for solving repetitive problems that lend themselves to parallel
solutions using a large number of simple processing elements.

o Examples include sorting, image processing, and Fourier transformations.
• Example – evaluate a polynomial using Horner’s rule
• 𝑦𝑦 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘
• 𝑦𝑦 = ((((𝑎𝑎𝑘𝑘𝑥𝑥 + 𝑎𝑎𝑘𝑘−1) × 𝑥𝑥 + 𝑎𝑎𝑘𝑘−2) × 𝑥𝑥 + 𝑎𝑎𝑘𝑘−3) × 𝑥𝑥⋯𝑎𝑎1) × 𝑥𝑥 + 𝑎𝑎0

X + X + X + X +

X X X Xan an-1 an-2 a0

0 Y

Figure 9.15 Using a Systolic Array to Evaluate a Polynomial

