
Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 1

9.4 Parallel and Multiprocessor Architectures
• Single processor limitations

o Heat and electromagnetic interference limit chip transistor density.
o Speed of light – signals cannot be transmitted faster than the speed of light.
o Economics – It may be possible to incrementally improve processor

performance but who will pay for it.
• Single processor limitations are a motivation for parallelism involving multiple

processors
• Parallel processor limitations

o Given 𝑛𝑛 processors running in parallel, perfect speedup would imply that
computational job could complete in 1

𝑛𝑛
 time, leading to an 𝑛𝑛-fold increase in

power (or a run-time decrease by a factor of 𝑛𝑛.)
o At best, parallel processing results in linear speedup in the number of

processors.
o Perfect speedup is not possible by Amdahl’s law because the slower

component will dominate.
o Inherent serialization of work prohibits perfect parallelization.
o The greater the sequential processing, the less cost-effective it is to employ a

multiprocessing parallel architecture.
o Most algorithms and existing code are inherently sequential, making the

application of parallel processing limited to a narrow group of specially
programmed applications.

o
9.4.1 Superscalar and VLIW

• Superscalar and Very Long Instruction Word (VLIW) architectures exhibit instruction-
level parallelism.

• Recall that pipelining divides the fetch-decode-execute cycle into stages that each
carry out a small part of the process on a set of instructions.

• Ideally, an instruction exits the pipeline during each tick of the clock.
• Superpipelining occurs when a pipeline has stages that require less than half a clock

cycle to complete.
• The pipeline is equipped with a separate clock running at a frequency that is at least

double that of the main system clock.
• Superpipelining is only one aspect of superscalar design.
• Superscalar architectures include multiple execution units such as specialized integer

and floating-point adders and multipliers.
• A critical component of this architecture is the instruction fetch unit, which can

simultaneously retrieve several instructions from memory.
• A decoding unit determines which of these instructions can be executed in parallel

and combines them accordingly.
• This architecture also requires compilers that make optimum use of the hardware.
• Very long instruction word (VLIW) architectures differ from superscalar architectures

because the VLIW compiler, instead of a hardware decoding unit, packs independent
instructions into one long instruction that is sent down the pipeline to the execution
units.

• One could argue that this is the best approach because the compiler can better
identify instruction dependencies.

Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 2

• However, compilers tend to be conservative and cannot have a view of the run time
code.

9.4.2 Vector Processors
• Vector computers are processors that operate on entire vectors or matrices at once.

o These systems are often called supercomputers.
• Vector computers are highly pipelined so that arithmetic instructions can be

overlapped.
• Vector processors can be categorized according to how operands are accessed.

o Register-register vector processors require all operands to be in registers.
o Memory-memory vector processors allow operands to be sent from memory

directly to the arithmetic units.
• A disadvantage of register-register vector computers is that large vectors must be

broken into fixed-length segments so they will fit into the register sets.
• Memory-memory vector computers have a longer startup time until the pipeline

becomes full.
• In general, vector machines are efficient because there are fewer instructions to

fetch, and corresponding pairs of values can be prefetched because the processor
knows it will have a continuous stream of data.

9.4.3 Interconnection Networks

• MIMD systems can communicate through shared memory or through an
interconnection network.

• Interconnection networks are often classified according to their topology, routing
strategy, and switching technique.

• Of these, the topology is a major determining factor in the overhead cost of message
passing.

• Message passing takes time owing to network latency and incurs overhead in the
processors.

• Interconnection networks can be either static or dynamic.
• Processor-to-memory connections usually employ dynamic interconnections. These

can be blocking or nonblocking.
o Nonblocking interconnections allow connections to occur simultaneously.

• Processor-to-processor message-passing interconnections are usually static, and can
employ any of several different topologies, as shown on the following slide.

Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 3

Figure 9.3 Static Network Topologies
a) Completely Connected

b) Star
c) Linear or Ring

d) Mesh and Mesh Ring
e) Tree

f) 3-D Hypercube
Figure 9.4 A Bus-Based Network

• Dynamic routing is achieved through switching networks that consist of crossbar
switches or 2 × 2 switches.

Figure 9.5 A Crossbar Network

Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 4

Figure 9.7 A Two-Stage Omega Network
• Multistage interconnection (or shuffle) networks are the most advanced class of

switching networks.
• They can be used in loosely-coupled distributed systems, or in tightly-coupled

processor-to-memory configurations.
• There are advantages and disadvantages to each switching approach.
• Bus-based networks, while economical, can be bottlenecks. Parallel buses can

alleviate bottlenecks, but are costly.
• Crossbar networks are nonblocking, but require 𝑛𝑛2 switches to connect n entities.
• Omega networks are blocking networks, but exhibit less contention than bus-based

networks. They are somewhat more economical than crossbar networks, n nodes
needing log2 𝑛𝑛 stages with 𝑛𝑛/2 switches per stage.

Property Bus Crossbar Multistage
Speed Low – Bad High – Good Moderate
Cost Low – Good High – Bad Moderate
Reliability Low – Bad High – Good High
Configurability High – Good Low – Bad Moderate
Complexity Low - Good High - Bad Moderate

Table 9.2 Properties of the Various Interconnection Networks

Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 5

9.4.4 Shared Memory Multiprocessors
• Tightly-coupled multiprocessor systems use the same memory. They are also

referred to as shared memory multiprocessors.
• The processors do not necessarily have to share the same block of physical memory:
• Each processor can have its own memory, but it must share it with the other

processors.
• Configurations such as these are called distributed shared memory multiprocessors.

CPU 1 CPU 2 CPU 3

Memory

Figure 9.8 a) Global Shared Memory
• Tightly-coupled multiprocessor systems use the same memory. They are also

referred to as shared memory multiprocessors.

Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 6

CPU 1 CPU 2 CPU 3

Memory Memory Memory

Figure 9.8 b) Distributed Shared Memory
• The processors do not necessarily have to share the same block of physical memory:
• Each processor can have its own memory, but it must share it with the other

processors.
• Shared memory MIMD machines can be divided into two categories based upon how

they access memory.
• In uniform memory access (UMA) systems, all memory accesses take the same

amount of time.
• To realize the advantages of a multiprocessor system, the interconnection network

must be fast enough to support multiple concurrent accesses to memory, or it will
slow down the whole system.

• Thus, the interconnection network limits the number of processors in a UMA system.
• The other category of MIMD machines are the nonuniform memory access (NUMA)

systems.
• While NUMA machines see memory as one contiguous addressable space, each

processor gets its own piece of it.
• Thus, a processor can access its own memory much more quickly than it can access

memory that is elsewhere.

Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 7

Processor Processor Processor

Cache Cache Cache

Single Bus

Input/
Output

Memory

Figure 9.8 c) Global Shared Memory with Separate Cache at Processors
• Not only does each processor have its own memory, it also has its own cache, a

configuration that can lead to cache coherence problems.
• Cache coherence problems arise when main memory data is changed and the cached

image is not. (We say that the cached value is stale.)
• To combat this problem, some NUMA machines are equipped with snoopy cache

controllers that monitor all caches on the systems. These systems are called cache
coherent NUMA (CC-NUMA) architectures.

• A simpler approach is to ask the processor having the stale value to either void the
stale cached value or to update it with the new value.

• When a processor’s cached value is updated concurrently with the update to
memory, we say that the system uses a write-through cache update protocol.

• If the write-through with update protocol is used, a message containing the update is
broadcast to all processors so that they may update their caches.

• If the write-through with invalidate protocol is used, a broadcast asks all processors
to invalidate the stale cached value.

• Write-invalidate uses less bandwidth because it uses the network only the first time
the data is updated, but retrieval of the fresh data takes longer.

• Write-update creates more message traffic, but all caches are kept current.
• Another approach is the write-back protocol that delays an update to memory until

the modified cache block must be replaced.
• At replacement time, the processor writing the cached value must obtain exclusive

rights to the data. When rights are granted, all other cached copies are invalidated.

Computer Organization II 9.4 Parallel and Multiprocessor Architectures
CMSC 3833 Lecture 66

 8

9.4.5 Distributed Computing
• Distributed computing is another form of multiprocessing. However, the term

distributed computing means different things to different people.
• In a sense, all multiprocessor systems are distributed systems because the processing

load is distributed among processors that work collaboratively.
• The common understanding is that a distributed system consists of very loosely-

coupled processing units.
• Recently, NOW (Network Of Workstation)s have been used as distributed systems to

solve large, intractable problems
• For general-use computing, the details of the network and the nature of the

multiplatform computing should be transparent to the users of the system.
• Remote procedure calls (RPCs) enable this transparency. RPCs use resources on

remote machines by invoking procedures that reside and are executed on the remote
machines.

• RPCs are employed by numerous vendors of distributed computing architectures
including the Common Object Request Broker Architecture (CORBA) and Java’s
Remote Method Invocation (RMI).

• Cloud computing is distributed computing to the extreme.
• It provides services over the Internet through a collection of loosely-coupled systems.
• In theory, the service consumer has no awareness of the hardware, or even its

location.
• Your services and data may even be located on the same physical system as that of

your business competitor.
• The hardware might even be located in another country.
• Security concerns are a major inhibiting factor for cloud computing.

