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9.4  Parallel and Multiprocessor Architectures 
• Single processor limitations 

o Heat and electromagnetic interference limit chip transistor density. 
o Speed of light – signals cannot be transmitted faster than the speed of light. 
o Economics – It may be possible to incrementally improve processor 

performance but who will pay for it. 
• Single processor limitations are a motivation for parallelism involving multiple 

processors 
• Parallel processor limitations 

o Given 𝑛𝑛 processors running in parallel, perfect speedup would imply that 
computational job could complete in 1

𝑛𝑛
 time, leading to an 𝑛𝑛-fold increase in 

power (or a run-time decrease by a factor of 𝑛𝑛.) 
o At best, parallel processing results in linear speedup in the number of 

processors. 
o Perfect speedup is not possible by Amdahl’s law because the slower 

component will dominate. 
o Inherent serialization of work prohibits perfect parallelization. 
o The greater the sequential processing, the less cost-effective it is to employ a 

multiprocessing parallel architecture. 
o Most algorithms and existing code are inherently sequential, making the 

application of parallel processing limited to a narrow group of specially 
programmed applications. 

o   
9.4.1 Superscalar and VLIW 

• Superscalar and Very Long Instruction Word (VLIW) architectures exhibit instruction-
level parallelism. 

• Recall that pipelining divides the fetch-decode-execute cycle into stages that each 
carry out a small part of the process on a set of instructions. 

• Ideally, an instruction exits the pipeline during each tick of the clock. 
• Superpipelining occurs when a pipeline has stages that require less than half a clock 

cycle to complete. 
• The pipeline is equipped with a separate clock running at a frequency that is at least 

double that of the main system clock. 
• Superpipelining is only one aspect of superscalar design. 
• Superscalar architectures include multiple execution units such as specialized integer 

and floating-point adders and multipliers. 
• A critical component of this architecture is the instruction fetch unit, which can 

simultaneously retrieve several instructions from memory. 
• A decoding unit determines which of these instructions can be executed in parallel 

and combines them accordingly. 
• This architecture also requires compilers that make optimum use of the hardware. 
• Very long instruction word (VLIW) architectures differ from superscalar architectures 

because the VLIW compiler, instead of a hardware decoding unit, packs independent 
instructions into one long instruction that is sent down the pipeline to the execution 
units. 

• One could argue that this is the best approach because the compiler can better 
identify instruction dependencies. 
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• However, compilers tend to be conservative and cannot have a view of the run time 
code. 
 

9.4.2 Vector Processors 
• Vector computers are processors that operate on entire vectors or matrices at once. 

o These systems are often called supercomputers. 
• Vector computers are highly pipelined so that arithmetic instructions can be 

overlapped. 
• Vector processors can be categorized according to how operands are accessed. 

o Register-register vector processors require all operands to be in registers. 
o Memory-memory vector processors allow operands to be sent from memory 

directly to the arithmetic units. 
• A disadvantage of register-register vector computers is that large vectors must be 

broken into fixed-length segments so they will fit into the register sets. 
• Memory-memory vector computers have a longer startup time until the pipeline 

becomes full. 
• In general, vector machines are efficient because there are fewer instructions to 

fetch, and corresponding pairs of values can be prefetched because the processor 
knows it will have a continuous stream of data. 

 
9.4.3 Interconnection Networks 

• MIMD systems can communicate through shared memory or through an 
interconnection network. 

• Interconnection networks are often classified according to their topology, routing 
strategy, and switching technique. 

• Of these, the topology is a major determining factor in the overhead cost of message 
passing. 

• Message passing takes time owing to network latency and incurs overhead in the 
processors. 

• Interconnection networks can be either static or dynamic. 
• Processor-to-memory connections usually employ dynamic interconnections. These 

can be blocking or nonblocking. 
o Nonblocking interconnections allow connections to occur simultaneously. 

• Processor-to-processor message-passing interconnections are usually static, and can 
employ any of several different topologies, as shown on the following slide. 
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Figure 9.3 Static Network Topologies 
a) Completely Connected 

b) Star 
c) Linear or Ring 

d) Mesh and Mesh Ring 
e) Tree 

f) 3-D Hypercube 
Figure 9.4 A Bus-Based Network 

• Dynamic routing is achieved through switching networks that consist of crossbar 
switches or 2 × 2 switches. 

 

 
 

Figure 9.5 A Crossbar Network 
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Figure 9.7 A Two-Stage Omega Network 
• Multistage interconnection (or shuffle) networks are the most advanced class of 

switching networks. 
• They can be used in loosely-coupled distributed systems, or in tightly-coupled 

processor-to-memory configurations.  
• There are advantages and disadvantages to each switching approach. 
• Bus-based networks, while economical, can be bottlenecks. Parallel buses can 

alleviate bottlenecks, but are costly. 
• Crossbar networks are nonblocking, but require 𝑛𝑛2 switches to connect n entities. 
• Omega networks are blocking networks, but exhibit less contention than bus-based 

networks. They are somewhat more economical than crossbar networks, n nodes 
needing log2 𝑛𝑛 stages with 𝑛𝑛/2 switches per stage.   

 
Property Bus Crossbar Multistage 
Speed Low – Bad High – Good Moderate 
Cost Low – Good High – Bad Moderate 
Reliability Low – Bad High – Good High 
Configurability High – Good Low – Bad Moderate 
Complexity Low - Good High - Bad Moderate 

Table 9.2 Properties of the Various Interconnection Networks 
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9.4.4 Shared Memory Multiprocessors 
• Tightly-coupled multiprocessor systems use the same memory.  They are also 

referred to as shared memory multiprocessors. 
• The processors do not necessarily have to share the same block of physical memory:  
• Each processor can have its own memory, but it must share it with the other 

processors. 
• Configurations such as these are called distributed shared memory multiprocessors. 

 
 

CPU 1 CPU 2 CPU 3

Memory

 
 

Figure 9.8 a) Global Shared Memory 
• Tightly-coupled multiprocessor systems use the same memory.  They are also 

referred to as shared memory multiprocessors. 
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Figure 9.8 b) Distributed Shared Memory 
• The processors do not necessarily have to share the same block of physical memory:  
• Each processor can have its own memory, but it must share it with the other 

processors. 
• Shared memory MIMD machines can be divided into two categories based upon how 

they access memory. 
• In uniform memory access (UMA) systems, all memory accesses take the same 

amount of time. 
• To realize the advantages of a multiprocessor system, the interconnection network 

must be fast enough to support multiple concurrent accesses to memory, or it will 
slow down the whole system. 

• Thus, the interconnection network limits the number of processors in a UMA system. 
• The other category of MIMD machines are the nonuniform memory access (NUMA) 

systems. 
• While NUMA machines see memory as one contiguous addressable space, each 

processor gets its own piece of it. 
• Thus, a processor can access its own memory much more quickly than it can access 

memory that is elsewhere. 
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Figure 9.8 c) Global Shared Memory with Separate Cache at Processors 
• Not only does each processor have its own memory, it also has its own cache, a 

configuration that can lead to cache coherence problems. 
• Cache coherence problems arise when main memory data is changed and the cached 

image is not. (We say that the cached value is stale.) 
• To combat this problem, some NUMA machines are equipped with snoopy cache 

controllers that monitor all caches on the systems. These systems are called cache 
coherent NUMA (CC-NUMA) architectures. 

• A simpler approach is to ask the processor having the stale value to either void the 
stale cached value or to update it with the new value.   

• When a processor’s cached value is updated concurrently with the update to 
memory, we say that the system uses a write-through cache update protocol. 

• If the write-through with update protocol is used, a message containing the update is 
broadcast to all processors so that they may update their caches. 

• If the write-through with invalidate protocol is used, a broadcast asks all processors 
to invalidate the stale cached value.   

• Write-invalidate uses less bandwidth because it uses the network only the first time 
the data is updated, but retrieval of the fresh data takes longer. 

• Write-update creates more message traffic, but all caches are kept current.   
• Another approach is the write-back protocol that delays an update to memory until 

the modified cache block must be replaced. 
• At replacement time, the processor writing the cached value must obtain exclusive 

rights to the data. When rights are granted, all other cached copies are invalidated. 
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9.4.5 Distributed Computing 
• Distributed computing is another form of multiprocessing. However, the term 

distributed computing means different things to different people. 
• In a sense, all multiprocessor systems are distributed systems because the processing 

load is distributed among processors that work collaboratively. 
• The common understanding is that a distributed system consists of very loosely-

coupled processing units. 
• Recently, NOW (Network Of Workstation)s have been used as distributed systems to 

solve large, intractable problems 
• For general-use computing, the details of the network and the nature of the 

multiplatform computing should be transparent to the users of the system. 
• Remote procedure calls (RPCs) enable this transparency.  RPCs use resources on 

remote machines by invoking procedures that reside and are executed on the remote 
machines. 

• RPCs are employed by numerous vendors of distributed computing architectures 
including the Common Object Request Broker Architecture (CORBA) and Java’s 
Remote Method Invocation (RMI). 

• Cloud computing is distributed computing to the extreme. 
• It provides services over the Internet through a collection of loosely-coupled systems. 
• In theory, the service consumer has no awareness of the hardware, or even its 

location. 
• Your services and data may even be located on the same physical system as that of 

your business competitor. 
• The hardware might even be located in another country. 
• Security concerns are a major inhibiting factor for cloud computing. 

 


