
Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 1

6.5. Virtual Memory
Term Description
Virtual Memory A logical memory space large enough to hold an entire application or

multiple applications.
Virtual Address A virtual address is the address generated by the CPU. The logical or

program address that the process uses. Whenever the CPU
generates an address, it always in terms of the virtual address space.

Physical Address The real address in main store. Main store is also called main
memory. Main memory is also called physical memory.

Mapping The mechanism by which virtual addresses are translated into
physical addresses.

Page Frames The equal-size chunks or blocks into which main memory (physical
memory) is divided.

Pages The blocks into which virtual memory (the logical address space) is
divided, each equal in size to a page frame. Virtual pages are stored
on disk until needed.

Paging The process of copying a virtual page from disk to a page frame in
main memory.

Fragmentation In the process allocating and reclaiming storage logically related data
become physically separated and split into small pieces that are
stored in a non-sequential locations.

Page Fault An event that occurs when a requested page is not in main memory
and must be copied into memory from disk.

Page File The page file is the implementation of the virtual memory on hard
disk, stored as pages.

• Main memory and virtual memory are divided into equal sized pages.
• The entire address space required by a process need not be in memory at once. Some

parts can be on disk, while others are in main memory.
• Further, the pages allocated to a process do not need to be stored contiguously--

either on disk or in memory.
• In this way, only the needed pages are in memory at any time, the unnecessary pages

are in slower disk storage.

6.5. 1 Paging

• Allocate physical memory to processes in fixed-size blocks called pages and keep track
of where the various pages of the process reside by recording information in a page
table.

• The page table has 𝑁𝑁 rows, where 𝑁𝑁 is the number of virtual pages in the process.
• Each row of the page table contains a valid bit. The valid bit is set to one (1) if the

page is in main store, otherwise it is set to zero (0).

Term Description
Page Field The most significant part of the virtual address that specifies the

page in which the address lies.
Offset Field The least significant part of the virtual address that specifies the

offset in the page to the desired byte.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 2

Address Translation:
1. Extract the page number from the virtual address.
2. Extract the offset from the virtual address.
3. Translate the page number into a physical page frame number by accessing the page

table.
3.1. Look up the page number in the page table (using the virtual page number as

an index.
3.2 Check the valid for that page.

3.2.1. If the valid bit = 0, the system generates a page fault and the
operating system must intervene to:
3.2.1.1. Locate the desired page on disk.
3.2.1.2. Find a free page frame (this may necessitate removing a

page from memory and copying it back to disk if there
are no free page frames.

3.2.1.3. Copy the desired page into the free page frame in main
store.

3.2.1.4. Update the page table. (The virtual page just brought in
must have its frame number and valid bit in the page
table modified. If a page was removed, its valid bit must
be set to zero (0).

3.2.1.5. Resume execution of the process causing the page fault,
continuing to step 3.2.2.

3.2.2. If the valid bit = 1, the page is in memory.
3.2.2.1. Replace the virtual page number with the actual frame

number.
3.2.2.2. Access the desired data at the offset in the physical page

frame by adding the offset to the frame number for the
given virtual page.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 3

Figure 6.18 – left side

Figure 6.18 – right side

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 4

Example:
• Virtual address space is 8K bytes (213 = 8192 bytes), making the virtual address

13 bits.
• Define the page size to be 1K bytes (210 = 1024 bytes), making the page offset

10 bits

Page Offset

3 bits 10 bits

13 bits

Virtual Address

Format for a 13-Bit Virtual Address with 213 = 8192 bytes
• Main store occupies 212 = 4096 bytes making a Physical (or real) Address 12

bits.
• The page size remains the same, 1K bytes (210 = 1024 bytes), making the page

offset 10 bits
• Given a 12-bit Physical Address and an offset of 10 bits, makes the Frame Address

2 bits.
• 23 = 8 Virtual pages are mapped to 22 = 4 physical (or real) page frames.

Offset

10 bits

Frame

2 bits

12 bits

Physical Address

Format for 12-Bit Physical Address with 212 = 4096 bytes

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 5

Page Frame Valid
Bit

0

1

1

0

0

1

1

0

0

1

2

3

4

5

6

7

3

0

1

2

-

-

-

-

Page Table

Example Page Table
• Find the Physical Address that corresponds to the Virtual address 0x1553

1. Convert the Virtual Address to binary separating the Page and Offset portions
of the address.
1 01 01 0101 0011
Page= 101=5
Offset= 01 0101 0111=0x153

2. Find the Frame in which the Page is mapped by employing the Page as an
index into the Page Table and extracting the Frame stored in the entry given
by the Page Number.
Page 5 is mapped to Frame 1.

3. Find the Physical Address by replacing the 3-bit Virtual Page Number with the
2-bit Physical Frame Number
Physical Address= Frame+Offset=01 + 01 0101 0111
Physical Address = 0101 0101 0111=0x553

• Find the Physical Address that corresponds to the Virtual address 0x1004
1. Convert the Virtual Address to binary separating the Page and Offset portions

of the address.
1 00 00 0000 0100
Page= 100=4
Offset= 00 0000 0100=0x004

2. Find the Frame in which the Page is mapped by employing the Page as an
index into the Page Table and extracting the Frame stored in the entry given
by the Page Number.
Page 4 is not mapped.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 6

A page fault occurs.
Since all the Physical Frames are occupied, one must be replaced.
Select a Frame to be replaced.
We have no information on which to make a selection.
Select a random Frame – Frame 0
Mark the Valid Bit in the Page Table at Index 2 0 indicating that that Page

Frame is no longer valid.
Replace the entry in the Page Table at index position 4.

Assign the Frame Number to 0.
Assign the Valid Bit to 1

3. Find the Physical Address by replacing the 3-bit Virtual Page Number with the

2-bit Physical Frame Number
Physical Address= Frame+Offset=00 +00 0000 0100=
Physical Address = 0000 0000 0100=0x004

6.5. 2 Effective Access Time Using Paging

• To access physical memory, two (2) accesses are required, one to translate the page

address to a frame address, and one to access the actual memory desired.
Symbol Meaning
𝐸𝐸𝐸𝐸𝐸𝐸 Effective Access Time – the time required to access memory using a

virtual memory system and paging.
𝑇𝑇𝑚𝑚𝑚𝑚 Time to access main store or main memory. A typical value in 2014

is 200ns.
𝑃𝑃𝑚𝑚𝑚𝑚 Probability that the desired data are in main store. A typical value is

0.99
𝑇𝑇𝑑𝑑 Time to access hard disk. A typical value is 10ms
𝑃𝑃𝑑𝑑 Probability that the desired data are on the hard disk. 𝑃𝑃𝑑𝑑 = 1 − 𝑃𝑃𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑚𝑚𝑚𝑚 × 𝑇𝑇𝑚𝑚𝑚𝑚 + (1 − 𝑃𝑃𝑚𝑚𝑚𝑚) × 𝑃𝑃𝑑𝑑

Assuming typical values and two memory references:

𝐸𝐸𝐸𝐸𝐸𝐸 = 0.99 × (200𝑛𝑛𝑛𝑛 + 200𝑛𝑛𝑛𝑛) + 0.01 × 10𝑚𝑚𝑚𝑚
𝐸𝐸𝐸𝐸𝐸𝐸 = 100.396 × 10−6 = 100.396𝜇𝜇𝜇𝜇

• Even if we had no page faults, the EAT would be 400ns because memory is always

read twice: First to access the page table, and second to load the page from memory.
• Because page tables are read constantly, it makes sense to keep them in a special

cache called a translation look-aside buffer (TLB).
• TLBs are a special associative cache that stores the mapping of virtual pages to

physical pages.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 7

Figure 6.27 Using the TLB
1. Extract the page number from the virtual address.
2. Extract the offset from the virtual address.
3. Search for the virtual page number in the TLB.
4. If the (virtual page #, page frame #) pair is found in the TLB, add the offset to the

physical frame number and access the memory location.
5. If there is a TLB miss, go to the page table to get the necessary frame number.

If the page is in memory, use the corresponding frame number and add the offset to
yield the physical address.

6. If the page is not in main memory, generate a page fault and restart the access when
the page fault is complete.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 8

6.5. 3 Putting It All Together: Using Cache, TLBs, and Paging

Figure 6.28 Putting It All Together: the TLB, Page Table, Cache, and Main Memory

6.5. 4 Advantages and Disadvantages of Paging and Virtual Memory

Disadvantages:

• Adds an extra memory reference when accessing data.
• Even with a TLB, the mapping of the virtual page number to a real memory page

frame still incurs and translation overhead.
• Memory is required to store the page table. For example, imagine a 32-bit virtual

address, 1GB of physical memory – a 30-bit physical memory address, and a 4096
byte page – a 12-bit offset. A virtual memory address has a 20-bit page field and
a 12-bit offset field. The page table must have 220 entries where each entry
stores 18-bit frame numbers and 1-bit valid flags. Each entry must occupy 3
bytes. Hence the page table occupies 3 × 220 = 3,145,728 bytes – not
insignificant penalty.

• The TLB is special and costly to implement.
Advantages

• Programs are no longer restricted by the amount of physical memory that is
available.

• Programmers are not required to manage memory. When programmers manage
memory they manage it badly.

• Virtual memory permits more programs to execute concurrently, thus, increasing
CPU utilization and system throughput.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 9

• A paging system enables a rudimentary protection system. With a few bits,
protection can be specified as “this page belongs to user X, no others are
permitted access” or “this page belongs to user X but you can read it.”

6.5. 5 Segmentation

• Another approach to virtual memory is the use of segmentation.
• Instead of dividing memory into equal-sized pages, virtual address space is divided

into variable-length segments, often under the control of the programmer.
• A segment is located through its entry in a segment table, which contains the

segment’s memory location and a bounds limit that indicates its size.
• After a page fault, the operating system searches for a location in memory large

enough to hold the segment that is retrieved from disk.
• Both paging and segmentation can cause fragmentation.
• Paging is subject to internal fragmentation because a process may not need the entire

range of addresses contained within the page. Thus, there may be many pages
containing unused fragments of memory.

• Segmentation is subject to external fragmentation, which occurs when contiguous
chunks of memory become broken up as segments are allocated and deallocated over
time.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 10

6.5. 5.1 Internal Fragmentation
• Internal fragmentation only occurs in paging systems.

Main Store for a Small Computer

• The 32K memory is divided into 8 page frames of 4K each.
• A schematic of this configuration is shown above.
• The numbers at the right are memory frame addresses.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 11

Memory Resources Needed for Four Processes

• Suppose there are four processes waiting to be loaded into the system with memory
requirements as shown in the table.

• We observe that these processes require 31K of memory.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 12

Memory Allocation for Three of the Four Processes

• When the first three processes are loaded, memory looks like this:
• All of the frames are occupied by three of the processes.
• Despite the fact that there are enough free bytes in memory to load the fourth

process, P4 has to wait for one of the other three to terminate, because there are no
unallocated frames.

• This is an example of internal fragmentation.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 13

6.5. 5.1 External Fragmentation
• External fragmentation only occurs in segmented systems

Memory Resources Needed for Two Processes and Five Segments

• Suppose that instead of frames, our 32K system uses segmentation.
• The memory segments of two processes is shown in the table at the right.
• The segments can be allocated anywhere in memory.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 14

Memory Allocation for Two Processes

• All of the segments of P1 and one of the segments of P2 are loaded as shown at the

right.
• Segment S2 of process P2 requires 11K of memory, and there is only 1K free, so it

waits.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 15

External Fragmentation

• Eventually, Segment 2 of Process 1 is no longer needed, so it is unloaded giving 11K

of free memory.
• But Segment 2 of Process 2 cannot be loaded because the free memory is not

contiguous.
• Over time, the problem gets worse, resulting in small unusable blocks scattered

throughout physical memory.
• This is an example of external fragmentation.
• Eventually, this memory is recovered through compaction, and the process starts

over.

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 16

External Fragmentation

Computer Organization II 6.5 Virtual Memory
CMSC 3833 Lecture 50

 17

• Large page tables are cumbersome and slow, but with its uniform memory mapping,
page operations are fast. Segmentation allows fast access to the segment table, but
segment loading is labor-intensive.

• Paging and segmentation can be combined to take advantage of the best features of
both by assigning fixed-size pages within variable-sized segments.

• Each segment has a page table. This means that a memory address will have three
fields, one for the segment, and another for the page, and a third for the offset.

