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6.4

Cache Memory
Purpose: The purpose of cache is to speed up memory accesses time.

Basic operation: The cache scans memory addresses as they appear on the CPU-Memory
bus. When the cache matches an address, the data are read from the cache memory
instead of the main memory. When the cache fails to make a match, the cache copies the
data from main memory and stores the new address and data in the cache, possibly,
replacing an existing address and corresponding data.

Cache stores both data and addresses.

To find a value in cache, the incoming virtual addresses is compared to all addresses in
the cache. If a match is found, corresponding data are delivered to the CPU. For this
reason, cache is called a content addressable memory. The contents are searched to find
the corresponding value (data).

There are three types of caches:
e Direct
e Fully Associative
e Set Associative

Typical access times for cache memory are 5 times faster than main memory. In 2014,
the approximate cache access time was 10ns and for main store 50ns.

Central Processing Unit

Virtual

Address Data

Memory System

Figure 1. The CPU — Virtual Memory System Interface

Read
1. The CPU assigns a virtual address to the Memory Address Register (MAR).
2. The CPU asserts the Read/m signal indicating that data are to be read from
memory.
3. After a few clock cycles, data are assigned to the Memory Buffer Register (MBR).
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Write

1. The CPU assigns data to the Memory Buffer Register (MBR).

2. The CPU assigns the virtual address of the data in the MBR to the Memory
Address Register (MAR).

3. The CPU asserts the Read/m signal indicating that data are to be written to
the address given by the MAR.

4. After a few clock cycles, data in the (MBR) are assigned to memory at the
address in the MAR.
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Y A

Main Store (RAM)

Figure 2. Anatomy of a Virtual Memory System

Data are sought in the cache, first.

The event that occurs when data cannot be found in the cache is called a cache miss.
The event that occurs when data are found in the cache is called a cache hit.

In the event of a cache miss, data are sought in the main store.

The event that occurs when data cannot be found in the main store is called a page
fault.
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If data are found in the main store, they are copied to the cache, along with the tag
portion of the corresponding virtual address. Then, the cache makes the data
available to the CPU. Accessing main store requires about five (5) times as much time
as accessing cache. For example, if a cache access costs 10ns, then a main store
access costs about 50ns.

In the event of a page fault, data are sought at their home location, on disk. Please
recall, that cache and main store contain only copies of what is stored on hard disk.
The virtual address is translated to a disk address consisting of the triple, surface,
cylinder, and sector. It is advantageous to match the sector size to the page size. For
example, it may happen that one sector occupies 2'? = 4096 bytes making it
advantageous to define a page to occupy the same storage. Accessing hard disk
requires about 10ms or about six orders of magnitude longer to access disk than to
access main store.

6.4.1.1 Direct Mapped Cache

Term | Definition

Tag e The tag is the most significant portion of the virtual address.

e Tags are stored in the cache.

e Acache hit occurs when the tag portion of the virtual address tag matches
the tag stored in the cache.

e A cache miss occurs when the tag portion of the virtual address tag does
not match the tag stored in the cache.

Block | ¢ The block is the next most significant portion of the virtual address.

e The block is not stored in the cache.

e For adirect mapped cache the block contains the index of tag.

e Foradirect mapped cache the block is used to find the location where the
tag is stored in the cache. The tag portion of the virtual memory address
is compared against the tag found in the cache.

Offset | ® The offset is the least significant portion of the virtual address.

e The offset is not stored in the cache.

e The offset can be used to determine how many bytes of data are stored
in the cache for each cache entry. For example, if the offset occupies 4
bits, then 2* = 16 bytes of data are stored in each cache entry.

e The specific value of the offset identifies the particular byte in a byte-
addressable memory.

Tag Block | Offset

i »
) »

Bits in Virtual Memory Address
Figure 3 The Format of a Virtual Address Using Direct Mapping
e The tag in the virtual memory address is matched against the tag stored in the
cache.
o The block is used by the cache to find the tag.
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e The offset is used by the cache to find the specific byte in the data stored in the
cache.

Example 1. Consider a byte-addressable memory having 21° = 1024 bytes and a cache
having eight (8) cache entries. Each cache entry contains four (4) bytes of data and one
tag consisting of the most significant five (5) bits of the 10-bit virtual address.

Tag BIock-
SO EEEEEE

A -
y

A

Bits in Virtual Memory Address

Figure 4. Example 1. The Format of a Virtual Address Using Direct Mapping
10
e |n this example there are 22—3 = 27 = 128 blocks of 4 bytes that are served by

each cache entry. Divide the number of bytes of main store by the number of
cache entries to determine how many blocks are served by a single cache entry.
This computation is valid only for a direct mapped cache.
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Data Address
00000 00
00000 00
0x00000000 00000 00
00000 00
0x11111111 00000 00
00000 00
00000 00
0x33333333 00000 00
Index Tag Data
11111 0x44444444 < 0x44444444 11111 00
11111 00
00000 0x00000000 [ 11111 00
11111 00
00000 0x11111111 < 0x55555555 11111 00
11111 00
11111 00
00000 0x33333333 < 11111 00
«—> <« >
5 bits 4 bytes
Cache Main Store

Figure 5. Example 1. Direct Cache Mapping

Data at address 11111 000 00 is mapped to the cache entry at index position 000.
Data at address 00000 010 00 is mapped to the cache entry at index position 010.
Data at address 00000 100 00 is mapped to the cache entry at index position 100.
Data at address 00000 111 00 is mapped to the cache entry at index position 111.
Data at address 11111 100 00 was mapped to the cache entry at index position 100
but was, later, overwritten by data at address 00000 100 00. A direct mapped cache
cannot store two values having the same index.

Extract the index from the virtual address. The index is stored in bit positions 2, 3 and
4 as shown on the previous page.

Use the index to find the cache entry.

Extract the tag from the cache entry.

Compare the tag in the virtual address with the tag in the cache.

4.1. If the tags match, deliver the corresponding data stored in the cache to the CPU.
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4.2. If the tags do not match, assign the tag from the virtual memory address to the
cache entry. Assign data from the main store to the cache entry. Deliver the
new data to the CPU.

Exercise': A computer has a 32-bit address and a direct-mapped cache. Addressing is to the
byte level. The cache has a capacity of 1 KB and uses lines that are 32 bytes. It uses write-
through and so does not require a dirty bit.

Solution:

Aline is datain a cache entry. Since data occupy 32 bytes, 5 bits are required to address
data in the cache entry. The offset is used to address the bytes in the cache entry. Five
(5) bits are required to address memory occupying 32 bytes.

(a)

(b)

How many bits are in the index for the cache?

Solution:

The index is the block. To determine the number of bits in the block, we need to
10

divide the size of the cache by the size of each entry. % = 225: = 25, There are

25 = 32 blocks requiring 5 bits for the block field.
How many bits are in the tag for the cache?

Solution:

The tag can be computed by subtracting the number of bits required for the block
and the offset from the number of bits in the virtual address. Recall that the virtual
address occupies 32 bits. Thus

Tag= 32 —5—5 = 22 bits.

What is the total number of bits of storage in the cache, including valid bits, the tags,
and the cache lines?

Solution:

For every cache entry there is:

o 1 valid bit

e 1 Tag occupying 22 bits

e 1 Cache entry occupying 32 bytes or 256 bits

e The total number of bitsis: 32 X (1 + 22 + 32 X 8) = 8928

! Exercise 13-3, page 659 Mano and Kime “Logic and Computer Design Fundamentals, 4" Ed.”
Pearson Education, Inc, 2008 ISBN 0-13-198926-X
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Figure 6. Direct Cache Entry Exercise
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6.4.1.2 Fully Associative Cache

Term

Definition

Tag

The tag is the most significant portion of the virtual address.

Tags are stored in the cache.

A cache hit occurs when the tag portion of the virtual address tag matches
the tag stored in the cache.

A cache miss occurs when the tag portion of the virtual address tag does
not match the tag stored in the cache.

Block

There is no block in a fully associative cache. The block field is appended to
the tag field.

Offset

The offset is the least significant portion of the virtual address.

The offset is not stored in the cache.

The offset can be used to determine how many bytes of data are stored
in the cache for each cache entry. For example, if the offset occupies 4
bits, then 2* = 16 bytes of data are stored in each cache entry.

The specific value of the offset identifies the particular byte in a byte-
addressable memory.

Tag Offset

Bits in Virtual Memory Address

Figure 7. The Format of a Virtual Address Using Fully Associative Mapping
The tag in the virtual memory address is matched against the tag stored in the

cache.

The offset is used by the cache to find the specific byte in the data stored in the

cache.

Example 2. Consider a byte-addressable memory having 21° = 1024 bytes and a cache
having eight (8) cache entries. Each cache entry contains four (4) bytes of data and one
tag consisting of the most significant eight (8) bits of the 10-bit virtual address.

Tag

INDERnan

A

Bits in Virtual Memory Address

Figure 8. Example 2. The Format of a Virtual Address Using Fully Associative Mapping
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Data Address

00000000 00
00000001 00
0x00000000 00000010 00
00000011 00
0x11111111 00000100 00
00000101 00
00000110 00
0x22222222 00000111 00

Entry Tag Data

00000100 0x11111111 < 0x33333333 11111000 00
00000111 0x22222222 11111001 00
11111010 00
1111101100
0x44444444 11111100 00
00000010 0x00000000 [— 11111101 00
1111111000
1111111100

A

11111100 0x44444444

-

N o o B WwWw N PO

11111000 0x33333333

A

< >
> < >

8 bits 4 bytes

\4
A
\4

Cache Main Store

Figure 9. Example 2. Fully Associative Cache Mapping

e Data at address 0000 0010 is mapped to cache entry 5. Please note that the entry
identifier is not part of the virtual address and is not used to either store or retrieve
values from the cache.

e Data at address 0000 0100 is mapped to cache entry O.

e Data at address 0000 0111 is mapped to cache entry 1.

e Dataat address 1111 1000 is mapped to cache entry 7.

e Dataat address 1111 1100 is mapped to cache entry 3.

1. Extract the tag from the virtual address.
2. Compare the tag simultaneously to all tags in the cache.
2.1. If the virtual address tag matches a tag in the cache, deliver the corresponding
data stored in the cache to the CPU.
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2.2. If the tags do not match, assign the tag from the virtual memory address to the
cache entry. Assign data from the main store to the cache entry. Deliver the
new data to the CPU.

6.4.1.3 Set Associative Cache

Term

Definition

Tag

The tag is the most significant portion of the virtual address.

Tags are stored in the cache.

A cache hit occurs when the tag portion of the virtual address tag matches
the tag stored in the cache.

A cache miss occurs when the tag portion of the virtual address tag does
not match the tag stored in the cache.

Block

The block is the next most significant portion of the virtual address.

The block is not stored in the cache.

For a set associative cache, the block identifies a set of entries where the
tag portion of the virtual address and corresponding data may be found.
The block is employed as an index, similar to that used in a direct mapped
cache. The difference here is that the set-associative block identifies a
row containing two or more tags and corresponding data.

The tag portion of the virtual address is matched against all the tags in the
set simultaneously. The set is shown as a row in the diagram below.

Offset

The offset is the least significant portion of the virtual address.

The offset is not stored in the cache.

The offset can be used to determine how many bytes of data are stored
in the cache for each cache entry. For example, if the offset occupies 4
bits, then 2* = 16 bytes of data are stored in each cache entry.

The specific value of the offset identifies the particular byte in a byte-
addressable memory.

Tag Block | Offset

Bits in Virtual Memory Address

Figure 10. The Format of a Virtual Address Using Set Associative Mapping

The tag in the virtual memory address is matched against the tags stored in the
cache.

The block is used by the cache to find the set of tags and corresponding data that
the tag portion of the virtual address is compared against.

The offset is used by the cache to find the specific byte in the data stored in the
cache.

10
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Example 3. Consider a byte-addressable memory having 21° = 1024 bytes and a cache
having eight (8) cache entries. Each cache entry contains four (4) bytes of data and one
tag consisting of the most significant six (6) bits of the 10-bit virtual address.

Tag Block-
9 8/ 7/6|5|4,3 2-

»
>

A

Bits in Virtual Memory Address

Figure 11. Example 3. The Format of a Virtual Address Using Set Associative Mapping

11
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Data Address

000000 00
000000 00
0x00000000 000000 00
000000 00
0x11111111 000001 00
000001 00
000001 00
0x22222222 000001 00

111110 00
111110 00
111110 00
111110 00
111111 033333333 000001 0x11111111 0133333333 111111 00
111111 00
000000 0100000000 111111 00

Index

000001 0x22222222 000000 111111 00

6 bits 4 bytes
6 bits 4 bytes

Cache Main Store

Figure 12. Example 3. Set Associative Cache Mapping

1. Theindexis extracted from the virtual address.
The tag is extracted from the virtual address.
3. The index is used to find the row defining the set of tags that are simultaneously
compared to find a match.
3.1 If a match is found, then corresponding data are delivered to the CPU.
3.2 If a match is NOT found then a cache entry in the row is replaced by the tag
portion of the virtual address and corresponding data retrieved from memory.
Data are then delivered to the CPU.

N

Exercise: A two-way set-associative cache in a system with 24-bit addresses has four 4-byte words
per line and a capacity of 1MB. Addressing is to the byte level.
(a) How many bits are there is the index and the tag?
Solution:

1. Compute the number of rows in the cache. A row consists of two (2) tags and
two (2) corresponding entries, each occupying 8 bytes. The capacity of a cache
excludes the space required to store tags, valid bits, or dirty bits. The capacity of
cache only includes that storage copied from main store. For this exercise each
row has two (2) 8-byte entries. Index in this exercise has the same meaning as
block. The size of the block (or index) is the cache capacity divided by the size of
all entries in a row. Let r be the number rows.

12
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_ 1MB 229B
"T@8+8)B _ 2B

Let i be the number of bits in the block (or index).
i =log,r =log, 216 = 16

— 216

To compute the size of the tag, we must subtract the size of the block (index) and
the size of the offset. Let o be the size of the offset and e be the size of a cache
entry.
e=8=283
olog, e =log, 23 =3
Let v be the size of the virtual address and t be the size of the tag.
v =24
t=v—i—0=24—-16—-3=5

block/index tag 1 entry = 8 bytes/ 2 entries per row

16 bit

D
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(b) Indicate the value of the index in hexadecimal for cache entries from the following main
store addresses in hexadecimal: FBCOOF, 14AC89, 48CFOF, and 3ACFO5.
Solution:
F| 8/ C|0|O|F 1(1(/1|1|1|/0|0|0|1|1|0|0|0|0O|0O|O|O|O|O|0O|2|2]|12|12
0|0|0|1|1|0|0|0|0|0|0O|0O|0O|0O|Of1

114/ A|C|8]|9 0/0j|0|1|0
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3|A|C|F|0]5 0/0/1|1/1/0|1|/0{21}1,0/0]1]1/1]1]0]0({0]0]|0|1|0]1
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o
o
[y
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(c) Can all of the cache entries from part (b) be in the cache simultaneously?

6.4.2 Replacement Policies

13
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e In the event of a cache-miss, a cache entry replaced.
e Optimal -
0 All entries that will be needed again soon are kept.
0 All entries that will not be needed again soon are discarded.
0 An algorithm that could look into the future to determine the precise entries
to keep or discard based on the foregoing criteria would be optimal.
0 An optimal replacement policy is impossible to implement because we
cannot know the future.
e Least recently used (LRU)
O LRU is based on temporal locality.
Record the time each block was most recently accessed.
Sort the blocks from most recently used to least recently used.
Update the list after every memory reference.
When a cache entry must be replaced, discard the least recently used entry.
0 LRU is too costly to implement.
e  First-in, first-out (FIFO)
0 The cache entry that has been in the cache for the longest time is replaced.

©O O0OO0Oo

e Random
0 Degenerate situations occur employing LRU and FIFO cause the cache to
thrash.

0 Thrashing is the state where a cache entry is discarded only to be restored
again. This cycle is repeated to the detriment of better performance.

0 A random cache replacement policy may cure thrashing but at the cost of
poorer overall performance compared to FIFO.

0 Random is difficult to do.

6.4.3 Effective Access Time and Hit Ratio
Symbol Definition

P, Probability that the address referenced is in cache

Py Probability that the address referenced is in main memory.
T. Cache access time

Ty Main store access time

Tp Hard disk access time

Tesf Memory system effective access time

Example 1. Find the Effective Access Time (EAT or Teff) for a memory system consisting of
a cache having an access time of 10ns and a main store access time of 200ns and the cache
hit ratio is 0.99.

T.ss = P(Cache Hit) X T¢ + P(Cache Miss) X Ty

Tepr = 0.99 X 10ns + (1 — 0.99) X 200ns = 11.9ns

Example 2.
Symbol Typical Value  Definition
P, 0.95 Probability that the address referenced is in cache
Py 1-5x10"7 Probability that the address referenced is in main memory.
T, 2ns Cache access time
Ty 10 ns Main store access time

14
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Tp 13 ms Hard disk access time
Tesy Memory system effective access time

1. Simple: assume that the memory system only includes cache and main store.
Assume that Py, = 0.05
Tesr = PcTec + (1 — Po)Ty
Terr = 0.95 X 2ns + (1 — 0.95) X 10ns
Terr = 1.9ns + 0.5ns = 2.4ns

2. Complex: assume that the memory system includes cache, main store and disk.

Terr = PcTe + (1 — Po)Tyesy

Tymerr = PuTu + (1 = Py)Tp

Tuerr = (1 =5%1077) x 10ns + 5 x 1077 x 13ms
Tyers = (1 =5%1077) x 10ns + 5 x 1077 x 13ms = 16.5ns

Terr = PcTe + (1 — Po)Tumess
Terr = 0.95 X 2ns + 0.05 X 16.5ns = 2.725ns

6.4.4 When Does Caching Break Down?
e Object oriented programming
0 Many small member functions calling each other. Each time a function is
called, a new locality is created.
e Two dimensional array access

6.4.5 Cache Write Policies
e  Write-through
0 A write-through policy updates both the cache and the main store
simultaneous on every write.
0 Slower than write-back
e  Write-back
0 A write-back policy only updates main store when a cache entry must be
discarded and its dirty-bit has been set.
0 Adirty bit is assigned to every cache entry such that if the data in the entry is
assigned a value (overwritten) the dirty bit is set signaling that the new data
must be copied back to main store.

6.4.6 Instruction and Data Caches
e Unified Cache or Integrated Cache
0 Asingle cache that is used to store both instructions and data
e Harvard Cache
0 Two caches —
= Data Cache
= |nstruction Cache
0 Separating the caches increases the probability of a cache hit (at least in the
instruction cache).

6.4.7 Levels of Cache

15
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e L1 Cache—

0 Accesstime: 4ns

0 Size: 8 - 64 Kbytes

0 Resident on the processor chip
e L2 Cache

0 Accesstime: 15—-20ns

O Size: 64 —KB to 2MB.

0 External to processor chip

16



