
Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 1

6.4 Cache Memory

Purpose: The purpose of cache is to speed up memory accesses time.

Basic operation: The cache scans memory addresses as they appear on the CPU-Memory
bus. When the cache matches an address, the data are read from the cache memory
instead of the main memory. When the cache fails to make a match, the cache copies the
data from main memory and stores the new address and data in the cache, possibly,
replacing an existing address and corresponding data.

Cache stores both data and addresses.

To find a value in cache, the incoming virtual addresses is compared to all addresses in
the cache. If a match is found, corresponding data are delivered to the CPU. For this
reason, cache is called a content addressable memory. The contents are searched to find
the corresponding value (data).

There are three types of caches:

• Direct
• Fully Associative
• Set Associative

Typical access times for cache memory are 5 times faster than main memory. In 2014,
the approximate cache access time was 10ns and for main store 50ns.

Memory System

Virtual
Address

Central Processing Unit

Data

Figure 1. The CPU – Virtual Memory System Interface

Read
1. The CPU assigns a virtual address to the Memory Address Register (MAR).
2. The CPU asserts the Read/Write signal indicating that data are to be read from

memory.
3. After a few clock cycles, data are assigned to the Memory Buffer Register (MBR).

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 2

Write

1. The CPU assigns data to the Memory Buffer Register (MBR).
2. The CPU assigns the virtual address of the data in the MBR to the Memory

Address Register (MAR).
3. The CPU asserts the Read/Write signal indicating that data are to be written to

the address given by the MAR.
4. After a few clock cycles, data in the (MBR) are assigned to memory at the

address in the MAR.

Virtual

Address
Data

Cache

Main Store (RAM)

Hard Disk

Memory
System

Figure 2. Anatomy of a Virtual Memory System

1. Data are sought in the cache, first.
2. The event that occurs when data cannot be found in the cache is called a cache miss.
3. The event that occurs when data are found in the cache is called a cache hit.
4. In the event of a cache miss, data are sought in the main store.
5. The event that occurs when data cannot be found in the main store is called a page

fault.

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 3

6. If data are found in the main store, they are copied to the cache, along with the tag
portion of the corresponding virtual address. Then, the cache makes the data
available to the CPU. Accessing main store requires about five (5) times as much time
as accessing cache. For example, if a cache access costs 10ns, then a main store
access costs about 50ns.

7. In the event of a page fault, data are sought at their home location, on disk. Please
recall, that cache and main store contain only copies of what is stored on hard disk.
The virtual address is translated to a disk address consisting of the triple, surface,
cylinder, and sector. It is advantageous to match the sector size to the page size. For
example, it may happen that one sector occupies 212 = 4096 bytes making it
advantageous to define a page to occupy the same storage. Accessing hard disk
requires about 10ms or about six orders of magnitude longer to access disk than to
access main store.

6.4.1.1 Direct Mapped Cache

Term Definition
Tag • The tag is the most significant portion of the virtual address.

• Tags are stored in the cache.
• A cache hit occurs when the tag portion of the virtual address tag matches

the tag stored in the cache.
• A cache miss occurs when the tag portion of the virtual address tag does

not match the tag stored in the cache.
Block • The block is the next most significant portion of the virtual address.

• The block is not stored in the cache.
• For a direct mapped cache the block contains the index of tag.
• For a direct mapped cache the block is used to find the location where the

tag is stored in the cache. The tag portion of the virtual memory address
is compared against the tag found in the cache.

Offset • The offset is the least significant portion of the virtual address.
• The offset is not stored in the cache.
• The offset can be used to determine how many bytes of data are stored

in the cache for each cache entry. For example, if the offset occupies 4
bits, then 24 = 16 bytes of data are stored in each cache entry.

• The specific value of the offset identifies the particular byte in a byte-
addressable memory.

OffsetTag Block

Bits in Virtual Memory Address
Figure 3 The Format of a Virtual Address Using Direct Mapping

• The tag in the virtual memory address is matched against the tag stored in the
cache.

• The block is used by the cache to find the tag.

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 4

• The offset is used by the cache to find the specific byte in the data stored in the
cache.

Example 1. Consider a byte-addressable memory having 210 = 1024 bytes and a cache
having eight (8) cache entries. Each cache entry contains four (4) bytes of data and one
tag consisting of the most significant five (5) bits of the 10-bit virtual address.

Bits in Virtual Memory Address

OffsetTag Block

0123456789

Figure 4. Example 1. The Format of a Virtual Address Using Direct Mapping

• In this example there are 2
10

23
= 27 = 128 blocks of 4 bytes that are served by

each cache entry. Divide the number of bytes of main store by the number of
cache entries to determine how many blocks are served by a single cache entry.
This computation is valid only for a direct mapped cache.

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 5

4 bytes5 bits

Cache

Tag Data

00000

11111

00000

11111

00000 1

11111 1

00000 00

11111 100

00000 01

11111 01

00000 10

11111 10

00000 11

11111 111

00000 1

11111 1

AddressData

0x00000000

0x00000000

0x11111111

0x11111111

0x33333333

0x33333333

0x444444440x44444444

0x55555555

Index

000

001

010

011

100

101

110

111

00000

00000

00000

11111

Main Store

Figure 5. Example 1. Direct Cache Mapping

• Data at address 11111 000 00 is mapped to the cache entry at index position 000.
• Data at address 00000 010 00 is mapped to the cache entry at index position 010.
• Data at address 00000 100 00 is mapped to the cache entry at index position 100.
• Data at address 00000 111 00 is mapped to the cache entry at index position 111.
• Data at address 11111 100 00 was mapped to the cache entry at index position 100

but was, later, overwritten by data at address 00000 100 00. A direct mapped cache
cannot store two values having the same index.

1. Extract the index from the virtual address. The index is stored in bit positions 2, 3 and
4 as shown on the previous page.

2. Use the index to find the cache entry.
3. Extract the tag from the cache entry.
4. Compare the tag in the virtual address with the tag in the cache.

4.1. If the tags match, deliver the corresponding data stored in the cache to the CPU.

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 6

4.2. If the tags do not match, assign the tag from the virtual memory address to the
cache entry. Assign data from the main store to the cache entry. Deliver the
new data to the CPU.

Exercise1: A computer has a 32-bit address and a direct-mapped cache. Addressing is to the
byte level. The cache has a capacity of 1 KB and uses lines that are 32 bytes. It uses write-
through and so does not require a dirty bit.

Solution:
• A line is data in a cache entry. Since data occupy 32 bytes, 5 bits are required to address

data in the cache entry. The offset is used to address the bytes in the cache entry. Five
(5) bits are required to address memory occupying 32 bytes.

(a) How many bits are in the index for the cache?

Solution:
The index is the block. To determine the number of bits in the block, we need to

divide the size of the cache by the size of each entry. 𝟏𝟏 𝑲𝑲𝑲𝑲
𝟑𝟑𝟑𝟑 𝑩𝑩

= 𝟐𝟐𝟏𝟏𝟏𝟏𝑩𝑩
𝟐𝟐𝟓𝟓𝑩𝑩

= 𝟐𝟐𝟓𝟓. There are
𝟐𝟐𝟓𝟓 = 𝟑𝟑𝟑𝟑 blocks requiring 5 bits for the block field.

(b) How many bits are in the tag for the cache?

Solution:
The tag can be computed by subtracting the number of bits required for the block
and the offset from the number of bits in the virtual address. Recall that the virtual
address occupies 32 bits. Thus
Tag= 𝟑𝟑𝟑𝟑 − 𝟓𝟓 − 𝟓𝟓 = 𝟐𝟐𝟐𝟐 bits.

(c) What is the total number of bits of storage in the cache, including valid bits, the tags,

and the cache lines?

Solution:
For every cache entry there is:
• 1 valid bit
• 1 Tag occupying 22 bits
• 1 Cache entry occupying 32 bytes or 256 bits
• The total number of bits is: 𝟑𝟑𝟑𝟑 × (𝟏𝟏 + 𝟐𝟐𝟐𝟐 + 𝟑𝟑𝟑𝟑 × 𝟖𝟖) = 𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖

1 Exercise 13-3, page 659 Mano and Kime “Logic and Computer Design Fundamentals, 4th Ed.”
Pearson Education, Inc, 2008 ISBN 0-13-198926-X

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 7

Tag Block Offset

0 1 2 3

4 5 6 7

8 9 10 11

12

16

20

24

28

13

17

21

25

29

14

18

22

26

30

15

19

23

27

31

22 5 5

Stored
in

Virtual
Memory
Address

Copied from Virtual
Memory Address

to Cache

1

Valid bit

32 Bytes
Copied from
Main Store
to Cache

Figure 6. Direct Cache Entry Exercise

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 8

6.4.1.2 Fully Associative Cache

Term Definition
Tag • The tag is the most significant portion of the virtual address.

• Tags are stored in the cache.
• A cache hit occurs when the tag portion of the virtual address tag matches

the tag stored in the cache.
• A cache miss occurs when the tag portion of the virtual address tag does

not match the tag stored in the cache.
Block There is no block in a fully associative cache. The block field is appended to

the tag field.
Offset • The offset is the least significant portion of the virtual address.

• The offset is not stored in the cache.
• The offset can be used to determine how many bytes of data are stored

in the cache for each cache entry. For example, if the offset occupies 4
bits, then 24 = 16 bytes of data are stored in each cache entry.

• The specific value of the offset identifies the particular byte in a byte-
addressable memory.

OffsetTag

Bits in Virtual Memory Address

Figure 7. The Format of a Virtual Address Using Fully Associative Mapping
• The tag in the virtual memory address is matched against the tag stored in the

cache.
• The offset is used by the cache to find the specific byte in the data stored in the

cache.
Example 2. Consider a byte-addressable memory having 210 = 1024 bytes and a cache
having eight (8) cache entries. Each cache entry contains four (4) bytes of data and one
tag consisting of the most significant eight (8) bits of the 10-bit virtual address.

Bits in Virtual Memory Address

OffsetTag

0123456789

Figure 8. Example 2. The Format of a Virtual Address Using Fully Associative Mapping

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 9

0x00000000

0x00000000

0x11111111

0x11111111

0x22222222

0x22222222

0x33333333

0x33333333

0x44444444

0x44444444

00000000 00

11111000 00

11111000

00000001 00

11111001 00

00000010 00

00000010

11111010 00

00000011 00

11111011 00

00000100 00

00000100

11111100 00

11111100

00000101 00

11111101 00

00000110 00

11111110 00

00000111 00

00000111

11111111 00

8 bits 4 bytes

Cache Main Store

Data Address

Tag DataEntry

0

1

2

3

4

5

6

7

Figure 9. Example 2. Fully Associative Cache Mapping

• Data at address 0000 0010 is mapped to cache entry 5. Please note that the entry
identifier is not part of the virtual address and is not used to either store or retrieve
values from the cache.

• Data at address 0000 0100 is mapped to cache entry 0.
• Data at address 0000 0111 is mapped to cache entry 1.
• Data at address 1111 1000 is mapped to cache entry 7.
• Data at address 1111 1100 is mapped to cache entry 3.

1. Extract the tag from the virtual address.
2. Compare the tag simultaneously to all tags in the cache.

2.1. If the virtual address tag matches a tag in the cache, deliver the corresponding
data stored in the cache to the CPU.

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 10

2.2. If the tags do not match, assign the tag from the virtual memory address to the
cache entry. Assign data from the main store to the cache entry. Deliver the
new data to the CPU.

6.4.1.3 Set Associative Cache
Term Definition
Tag

• The tag is the most significant portion of the virtual address.
• Tags are stored in the cache.
• A cache hit occurs when the tag portion of the virtual address tag matches

the tag stored in the cache.
• A cache miss occurs when the tag portion of the virtual address tag does

not match the tag stored in the cache.
Block • The block is the next most significant portion of the virtual address.

• The block is not stored in the cache.
• For a set associative cache, the block identifies a set of entries where the

tag portion of the virtual address and corresponding data may be found.
The block is employed as an index, similar to that used in a direct mapped
cache. The difference here is that the set-associative block identifies a
row containing two or more tags and corresponding data.

• The tag portion of the virtual address is matched against all the tags in the
set simultaneously. The set is shown as a row in the diagram below.

Offset • The offset is the least significant portion of the virtual address.
• The offset is not stored in the cache.
• The offset can be used to determine how many bytes of data are stored

in the cache for each cache entry. For example, if the offset occupies 4
bits, then 24 = 16 bytes of data are stored in each cache entry.

• The specific value of the offset identifies the particular byte in a byte-
addressable memory.

OffsetTag Block

Bits in Virtual Memory Address

Figure 10. The Format of a Virtual Address Using Set Associative Mapping
• The tag in the virtual memory address is matched against the tags stored in the

cache.
• The block is used by the cache to find the set of tags and corresponding data that

the tag portion of the virtual address is compared against.
• The offset is used by the cache to find the specific byte in the data stored in the

cache.

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 11

Example 3. Consider a byte-addressable memory having 210 = 1024 bytes and a cache
having eight (8) cache entries. Each cache entry contains four (4) bytes of data and one
tag consisting of the most significant six (6) bits of the 10-bit virtual address.

Bits in Virtual Memory Address

OffsetTag Block

0123456789

Figure 11. Example 3. The Format of a Virtual Address Using Set Associative Mapping

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 12

0x00000000

0x00000000

0x11111111

0x11111111

0x22222222

0x22222222

0x333333330x33333333

000000 00 00

111110 00 00

000000 01 00

111110 01 00

000000 10 00

111110 10 00

000000 11 00

111110 11 00

000001 00 00

111111 00 00

000001 01 00

111111 01 00

000001 10 00

111111 10 00

000001 11 00

111111 11 00

6 bits
6 bits

4 bytes
4 bytes

Main Store

111111

000001

000001

000000

000000

00

01

10

11

Index

Cache

Data Address

Figure 12. Example 3. Set Associative Cache Mapping

1. The index is extracted from the virtual address.
2. The tag is extracted from the virtual address.
3. The index is used to find the row defining the set of tags that are simultaneously

compared to find a match.
3.1 If a match is found, then corresponding data are delivered to the CPU.
3.2 If a match is NOT found then a cache entry in the row is replaced by the tag

portion of the virtual address and corresponding data retrieved from memory.
Data are then delivered to the CPU.

Exercise: A two-way set-associative cache in a system with 24-bit addresses has four 4-byte words
per line and a capacity of 1MB. Addressing is to the byte level.

(a) How many bits are there is the index and the tag?
Solution:

1. Compute the number of rows in the cache. A row consists of two (2) tags and
two (2) corresponding entries, each occupying 8 bytes. The capacity of a cache
excludes the space required to store tags, valid bits, or dirty bits. The capacity of
cache only includes that storage copied from main store. For this exercise each
row has two (2) 8-byte entries. Index in this exercise has the same meaning as
block. The size of the block (or index) is the cache capacity divided by the size of
all entries in a row. Let 𝑟𝑟 be the number rows.

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 13

𝑟𝑟 =
1 𝑀𝑀𝐵𝐵

(8 + 8)𝐵𝐵
=

220𝐵𝐵
24𝐵𝐵

= 216

Let 𝑖𝑖 be the number of bits in the block (or index).
𝑖𝑖 = log2 𝑟𝑟 = log2 216 = 16

To compute the size of the tag, we must subtract the size of the block (index) and
the size of the offset. Let 𝑜𝑜 be the size of the offset and e be the size of a cache
entry.

𝑒𝑒 = 8 = 23
𝑜𝑜 log2 𝑒𝑒 = log2 23 = 3

Let 𝑣𝑣 be the size of the virtual address and 𝑡𝑡 be the size of the tag.
𝑣𝑣 = 24

𝑡𝑡 = 𝑣𝑣 − 𝑖𝑖 − 𝑜𝑜 = 24 − 16 − 3 = 5

block/index tag 1 entry = 8 bytes/ 2 entries per row

row

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

5 bits16 bit

.

.

.

A row in the two-way set-associative cache

(b) Indicate the value of the index in hexadecimal for cache entries from the following main
store addresses in hexadecimal: F8C00F, 14AC89, 48CF0F, and 3ACF05.
Solution:

F 8 C 0 0 F 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1
 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
 1 8 0 1

1 4 A C 8 9 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 1
 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 1
 9 5 9 1

4 8 C F 0 F 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1
 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1
 1 9 E 1

3 A C F 0 5 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1
 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0
 5 9 E 0

(c) Can all of the cache entries from part (b) be in the cache simultaneously?

6.4.2 Replacement Policies

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 14

• In the event of a cache-miss, a cache entry replaced.
• Optimal –

o All entries that will be needed again soon are kept.
o All entries that will not be needed again soon are discarded.
o An algorithm that could look into the future to determine the precise entries

to keep or discard based on the foregoing criteria would be optimal.
o An optimal replacement policy is impossible to implement because we

cannot know the future.
• Least recently used (LRU)

o LRU is based on temporal locality.
o Record the time each block was most recently accessed.
o Sort the blocks from most recently used to least recently used.
o Update the list after every memory reference.
o When a cache entry must be replaced, discard the least recently used entry.
o LRU is too costly to implement.

• First-in, first-out (FIFO)
o The cache entry that has been in the cache for the longest time is replaced.

• Random
o Degenerate situations occur employing LRU and FIFO cause the cache to

thrash.
o Thrashing is the state where a cache entry is discarded only to be restored

again. This cycle is repeated to the detriment of better performance.
o A random cache replacement policy may cure thrashing but at the cost of

poorer overall performance compared to FIFO.
o Random is difficult to do.

6.4.3 Effective Access Time and Hit Ratio

Symbol Definition
𝑷𝑷𝑪𝑪 Probability that the address referenced is in cache
𝑷𝑷𝑴𝑴 Probability that the address referenced is in main memory.
𝑻𝑻𝑪𝑪 Cache access time
𝑻𝑻𝑴𝑴 Main store access time
𝑻𝑻𝑫𝑫 Hard disk access time
𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆 Memory system effective access time

Example 1. Find the Effective Access Time (EAT or 𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆) for a memory system consisting of
a cache having an access time of 10ns and a main store access time of 200ns and the cache
hit ratio is 0.99.

𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆 = 𝑷𝑷(𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑯𝑯𝑯𝑯𝑯𝑯) × 𝑻𝑻𝑪𝑪 + 𝑷𝑷(𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴) × 𝑻𝑻𝑴𝑴
𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆 = 0.99 × 10𝑛𝑛𝑛𝑛 + (1 − 0.99) × 200𝑛𝑛𝑛𝑛 = 11.9𝑛𝑛𝑛𝑛

Example 2.
Symbol Typical Value Definition
𝑷𝑷𝑪𝑪 0.95 Probability that the address referenced is in cache
𝑷𝑷𝑴𝑴 1 − 5 × 10−7 Probability that the address referenced is in main memory.
𝑻𝑻𝑪𝑪 2 ns Cache access time
𝑻𝑻𝑴𝑴 10 ns Main store access time

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 15

𝑻𝑻𝑫𝑫 13 ms Hard disk access time
𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆 Memory system effective access time

1. Simple: assume that the memory system only includes cache and main store.

Assume that 𝑃𝑃𝑀𝑀 = 0.05
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃𝐶𝐶𝑇𝑇𝐶𝐶 + (1 − 𝑃𝑃𝐶𝐶)𝑇𝑇𝑀𝑀

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 0.95 × 2𝑛𝑛𝑛𝑛 + (1 − 0.95) × 10𝑛𝑛𝑛𝑛
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 1.9𝑛𝑛𝑛𝑛 + 0.5𝑛𝑛𝑛𝑛 = 2.4𝑛𝑛𝑛𝑛

2. Complex: assume that the memory system includes cache, main store and disk.
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃𝐶𝐶𝑇𝑇𝐶𝐶 + (1 − 𝑃𝑃𝐶𝐶)𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑀𝑀𝑇𝑇𝑀𝑀 + (1 − 𝑃𝑃𝑀𝑀)𝑇𝑇𝐷𝐷

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (1 − 5 × 10−7) × 10𝑛𝑛𝑛𝑛 + 5 × 10−7 × 13𝑚𝑚𝑚𝑚

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (1 − 5 × 10−7) × 10𝑛𝑛𝑛𝑛 + 5 × 10−7 × 13𝑚𝑚𝑚𝑚 = 16.5𝑛𝑛𝑛𝑛

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃𝐶𝐶𝑇𝑇𝐶𝐶 + (1 − 𝑃𝑃𝐶𝐶)𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 = 0.95 × 2𝑛𝑛𝑛𝑛 + 0.05 × 16.5𝑛𝑛𝑛𝑛 = 2.725𝑛𝑛𝑛𝑛

6.4.4 When Does Caching Break Down?

• Object oriented programming
o Many small member functions calling each other. Each time a function is

called, a new locality is created.
• Two dimensional array access

6.4.5 Cache Write Policies

• Write-through
o A write-through policy updates both the cache and the main store

simultaneous on every write.
o Slower than write-back

• Write-back
o A write-back policy only updates main store when a cache entry must be

discarded and its dirty-bit has been set.
o A dirty bit is assigned to every cache entry such that if the data in the entry is

assigned a value (overwritten) the dirty bit is set signaling that the new data
must be copied back to main store.

6.4.6 Instruction and Data Caches

• Unified Cache or Integrated Cache
o A single cache that is used to store both instructions and data

• Harvard Cache
o Two caches –

 Data Cache
 Instruction Cache

o Separating the caches increases the probability of a cache hit (at least in the
instruction cache).

6.4.7 Levels of Cache

Computer Organization II 6.4 Cache Memory
CMSC 3833 Lecture 49

 16

• L1 Cache –
o Access time: 4ns
o Size: 8 - 64 Kbytes
o Resident on the processor chip

• L2 Cache
o Access time: 15 – 20ns
o Size: 64 – KB to 2MB.
o External to processor chip

