Computer Organization Il
CMSC 3833

Micro Scanner Example

Lecture 45.5

ID | Left-hand side

Right-hand side

program — | begin statement-list end

statement-list | = | statement

statement-list | — | statement-list ; statement

statement — | id := expression

statement — | read (identifier-list)

statement — | write (expression-list)

identifier-list - |id

identifier-list — | identifier-list , id

expression-list | — | expression

expression-list | — | expression-list , expression

expression - | primary

expression — | expression add-op primary

primary — | (expression)

primary - |id

primary - | intlit

add-op - |+

add-op - |-
Token Specification Token Specification
ID (letter | _)(letter | digit | _)* ASSIGN =
BEGAN begin COMMA ,
END end SEMICOLON | ;
READ read LPAREN (
WRITE write RPAREN)
INTLIT digit+ PLUS +

MINUS -

Computer Organization Il
CMSC 3833

File mkmcr

rm mcrlex.cpp
make -f makemcr

File rmmcr
rm mcrlex.cpp
rm *.o

rm mcr

File makemcr

H

1w

File makemcr creates the micro scanner mcr

H

™

Author: Thomas R. Turner
E-Mail: trturner@uco.edu

Date: March, 2003

H#

o

Copyright March, 2003 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.

H

Object files

#

obj = mcr.o\
mcrlex.o

H

bg

Bind the micro scanner using the linkage editor

#
mcr: S{obj}

g++ -0 mcr ${obj} -Im -l
H

™

File mcr.cpp processes command line arguments

#

mcr.o: mcr.cpp mcrlex.h
g++ -C -g mcr.cpp

H

™

File mcrlex.cpp is the lex-generated scanner

H#

™

mcrlex.cpp: mcrlex.l mcrlex.h

lex mcrlex.|

mv lex.yy.c mcrlex.cpp

T

Micro Scanner Example
Lecture 45.5

Computer Organization Il Micro Scanner Example
CMSC 3833 Lecture 45.5

File mcr.cpp
//
//File mcr.cpp processes command line arguments and invokes lex (yylex)
//to find tokens in the input file.

//
//Author: Thomas R. Turner
//E-Mail: trturner@uco.edu
//Date: April, 2004

//
//Revised January, 2015

I/l

//C++ include files
//
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <fstream>
#include <cstdio>
#include <string>
#include <iomanip>
using namespace std;
/l
//Application include files
/l
#include "mcrlex.h"
//
//FileException is thrown when a file whose name is given on the command line
//cannot be opened.
/l
struct FileException {
FileException(const char* fn)
{ cout<<endl
cout << "File " << fn << " cannot be opened.";
cout << endl;

}

b
//
//

//Commandlineerror is thrown when too many arguments are put on the
//command line
//
struct CommandLineException {
CommandLineException(int m,int a)
{ cout<<endl
cout << "Too many file names on the command line.";
cout << endl;
cout << "A maximum of " << m << " file names can appear on the command line.";
cout << endl;

Computer Organization Il Micro Scanner Example
CMSC 3833 Lecture 45.5

cout << g << " file names were entered.";
cout << endl;
cout << "p01 (<input file name> (<output file name>))";

b
//
//Function Title prints a title
//
void Title(ostream& o)
{ o<<endl

0 << setw(15) << "Token Code";

o<<"";
0 << setw(15) << "Token Name";
o<<" "
o0 << "Token Spelling";

}

//

//Function LexMgr processes the input file, calls yylex, the scanner, and
//produces the output file.
/l
void LexMgr(FILE* j,ostream& o)
{ static const char* TokenName[]=
{"EOF" ,"BEGIN" ,"END" ,"READ" ,"WRITE"
SINTLIT" ,"ID" ,"ASSIGN" ,"SEMICOLON","COMMA"
,"LPAREN" , "RPAREN" ,"PLUS" ,"MINUS" ,"ERROR"

b
Lexer L(i); //Redirect yylex to read file i instead of
//the command line
Title(o);
for (int t=yylex();t>0;t=yylex()){
o << endl;
0 << setw(15) << t;
o<<""™s
0 << setw(15) << TokenNamelt];
o<<"";
0 << L.FetchSpelling();
}
o << endl;

Computer Organization Il
CMSC 3833

//

//Function main processes command line arguments

/1

int main(int argc, char* argv[])
{ try{

char ifn[255],0fn[255];
switch (argc) {
case 1://no files on the command line
cout << "Enter the input file name. ";
cin >> ifn;
cout << "Enter the output file name. ";
cin >> ofn;
break;

Micro Scanner Example
Lecture 45.5

case 2://input file on the command line/prompt for output file

strepyl(ifn,argvi1]);
cout << "Enter the output file name. ";
cin >> ofn;
break;
case 3://Both files on the input line
strepylifn,argvi1]);
strepy(ofn,argv(2]);
break;
default:
throw CommandLineException(2,argc-1);
break;
}
FILE* i=fopen(ifn,"r"); if (}/) throw FileException(ifn);
ofstream o(ofn); if (10) throw FileException(ofn);
LexMgr(i,0);
fclosel(i);
o.close();

}catch(...){

}

cout << endl;

cout << "Program Terminated!";
cout << endl;

cout << "l won't be back!";

cout << endl;
exit(EXIT_FAILURE);

return 0;

Computer Organization Il Micro Scanner Example
CMSC 3833 Lecture 45.5

File mcrlex.h

#ifndef mcrlex_h
#define mcrlex_h 1

I/l

// File mcrlex.h defines class Lexer.
//
// Author: Thomas R. Turner
// E-Mail: trturner.uco.edu
// Date: March, 2003

//
// Revised January, 2015

/l
// Copyright March, 2003 by Thomas R. Turner

// Do not reproduce without permission from Thomas R. Turner.
//
//
// Standard C and C++ include files
//
#include <cstdio>
#include <fstream>
#include <iostream>
using namespace std;
//
//Token definitions
/l
#include "y.tab.h"
//
//Function: yylex

//Function yylex is the mcrner. Function yylex returns an integer
//token code as defined above or 0 if end-of-file has been

//reached.
/l
#ifdef __cplusplus
extern "C"
#endif
int yylex (void);
/l
//Class Lexer defines the attributes of a Scanner
/l
class Lexer {
int tokencode; //Code for the most recent token found
public:
Lexer(FILE* i); //Constructor used to redirect the keyboard
//(stdin) to file i.
int Lex(void); //Call the scanner yylex and return the code
//found by yylex
int FetchTokenCode(void); //Return the code of the most recent token

Computer Organization Il Micro Scanner Example

CMSC 3833 Lecture 45.5
void StoreTokenCode(int T); //Store the token code.
char* FetchSpelling(void); //Return the spelling of the most recent
//token
b
#endif
File y.tab.h

#ifndef y_tab_h
#definey_tab_h 1
//

//Token definitions
//
#define BEGAN
#tdefine END
#tdefine READ
ttdefine WRITE
ttdefine INTLIT
ttdefine /ID

#tdefine ASSIGN
#tdefine SEMICOLON
#tdefine COMMA
#tdefine LPAREN
ttdefine RPAREN
ttdefine PLUS
ttdefine MINUS
ttdefine ERROR
ttendif

OCOoONOOTUVEA,WNR

R R R R
B WNRO

Computer Organization Il
CMSC 3833

File mcrlex.

%{
/1

// File mcrlex.l defines a prototype scanner for the micro language.

// The scanner definition is a lex specification.
//
// Author: Thomas R. Turner
// E-Mail: trturner@ucok.edu
// Date: March, 2003

//
//Copyright March, 2003 by Thomas R. Turner.

//Do not reproduce without permission from Thomas R. Turner
//
/l
// Standard C and C++ Library Include Files
/l
#include <string>
#include <iostream>
#include <fstream>
#include <cstdio>

//

// Application Includes
//

#include "mcrlex.h"

//

//Token definitions

//

#include "y.tab.h"

//

//Namespaces

//

using namespace std;
//

//Externals

//

//

//Global Variables

//

int TokenMgr(int t); //Token post processing
%}

Micro Scanner Example
Lecture 45.5

Computer Organization Il

CMSC 3833

%%

[\t\n]+ ;

[_a-zA-Z][_a-zA-20-9]* return TokenMgr(ID);
[0-9]+ return TokenMgr(INTLIT);
"=t return TokenMgr(ASSIGN);
" return TokenMgr(SEMICOLON);
" return TokenMgr(COMMA);
"M return TokenMgr(LPAREN);
") return TokenMgr(RPAREN);
"t return TokenMgr(PLUS);
" return TokenMgr(MINUS);

. return TokenMgr(ERROR);
%%

//

//Class Lexer implementation

//

//Function TokenMgr processes the token after it has been recognized

//
int TokenMgr(int t)

{
if (t!=/D) return t;
if ((string)yytext=="begin") return BEGAN;
if ((string)yytext=="end") return END;
if ((string)yytext=="read") return READ;
if ((string)yytext=="write") return WRITE;
return /D;

}

//

//Constructor Lexer is used to redirect the input file stream from the

//keyboard to input file stream i.

/l

Lexer::Lexer(FILE* i)

{ wyin=i;

}

//

//Function Lex calls yylex

//

int Lexer::Lex(void)

{ tokencode=yylex();
return tokencode;

}

Micro Scanner Example
Lecture 45.5

Computer Organization Il Micro Scanner Example
CMSC 3833 Lecture 45.5

//

//Function FetchSpelling returns a pointer to the spelling of the most
//recent token.

//
char* Lexer::FetchSpelling(void)

{

return (char*)yytext;
}
//
//Function FetchTokenCode returns the code of the most recent token
//
int Lexer::FetchTokenCode(void)
{ return tokencode;
}
/l
//Function StoreTokenCode records the most recent token code
/l
void Lexer::StoreTokenCode(int T)
{ tokencode=T;

}
// End of Lex Definition

File t00.mcr
begin read(x); x:=x+2; y:=x-3; write(x,y); end
File t00.trc

Token Code Token Name Token Spelling
1 BEGIN begin
3 READ read
10 LPAREN
ID
RPAREN
SEMICOLON
ID
ASSIGN
ID
PLUS
INTLIT
SEMICOLON
ID
ASSIGN
ID
MINUS
INTLIT
SEMICOLON
WRITE
LPAREN

=
= O

=

|_\
OPROUITWONOOUINONO ®©

A§u|w|><ll\<u||\J+><ll><ulv><A
r~+
D

'_\

10

Computer Organization Il Micro Scanner Example

CMSC 3833 Lecture 45.5
6 ID x
9 COMMA ,
6 IDy
11 RPAREN)
8 SEMICOLON ;
2 END end

11

