
Computer Organization II 5.5 Instruction Pipelining
CMSC 3833 Lecture 44

 1

5.5 Instruction Pipelining

• Some CPUs divide the fetch-decode-execute cycle into smaller steps.
• These smaller steps can often be executed in parallel to increase throughput.
• Such parallel execution is called instruction pipelining.
• Instruction pipelining provides for instruction level parallelism (ILP)

Decompose the fetch-decode-execute cycle into component steps.

1. Fetch instruction
2. Decode opcode
3. Calculate effective address of operands
4. Fetch operands
5. Execute instruction
6. Store result

Imagine a six-stage pipeline

• S1 fetches the instruction
• S2 decodes the instruction
• S3 determines the effective address of operands
• S4 fetches operands
• S5 executes the instruction
• S6 stores the result.

Two Instructions Going through a 6-stage Pipeline

Computer Organization II 5.5 Instruction Pipelining
CMSC 3833 Lecture 44

 2

• The theoretical speedup offered by a pipeline can be determined as follows:
Let tp be the time per stage. Each instruction represents a task, T, in the pipeline.
The first task (instruction) requires k × tp time to complete in a k-stage pipeline.
The remaining (n - 1) tasks emerge from the pipeline one per cycle. So the total
time to complete the remaining tasks is

(n - 1)tp.
Thus, to complete n tasks using a k-stage pipeline requires:

 (k × tp) + (n - 1)tp = (k + n - 1)tp.

• If we take the time required to complete n tasks without a pipeline and divide it

by the time it takes to complete n tasks using a pipeline, we find:

• If we take the limit as n approaches infinity, (k + n - 1) approaches n, which results

in a theoretical speedup of:

Computer Organization II 5.5 Instruction Pipelining
CMSC 3833 Lecture 44

 3

However:
• An instruction pipeline may stall, or be flushed for any of the following reasons:

o Resource conflicts.
• Example: in the same time period, one instruction seeks to read

memory while another needs to store a value in memory
o Data dependencies.

• The result of one instruction, not yet completed, is to be used as
an operand to a following instruction.

o Conditional branching.
• Control flow is altered based on computed conditions.

• Measures can be taken at the software level as well as at the hardware level to
reduce the effects of these hazards, but they cannot be totally eliminated.

