Computer Organization Il 5.2 Instruction Formats

CMSC 3833

Lecture 41

5.1 Introduction

Instruction sets are differentiated by the following:

e Number of bits per instruction.

e Stack-based or register-based.

e Number of explicit operands per instruction.
e Operand location.

e Types of operations.

e Type and size of operands.

5.2.1 Design Decisions for Instructions Sets
Instruction set architectures are measured according to:

* Main memory space occupied by a program.

e Instruction complexity.

e Instruction length (in bits).

e Total number of instructions in the instruction set.

Instruction length: Short instructions are typically better because they take up less
space in memory and can be fetched quickly. However, this limits the number of
instructions, because there must be enough bits in the instruction to specify the
number of instructions we need. Shorter instructions also have tighter limits on the
size and number of operands.

Comments:
0 The goal is to go fast.

0 When trading space for speed, the rule is you should almost always favor speed
over space.

0 How manyinstructions are needed? A NAND gate is functionally complete. MARIE
has less than 16 instructions. What programs cannot be implemented on MARIE?

Fixed versus varying length instructions: Instructions of a fixed length are easier to
decode but waste space.

Comments:

0 What space are we discussing? Are we discussing the space in memory or are re
we discussing the space on the integrated circuit to implement the more
complicated logic required to decode variable length instructions?

Memory organization affects instruction format. If memory has, for example, 36-
(Univac 1100) or 64-bit (CDC 6600, Cray) words and is not byte addressable, it is
difficult to access a single character.

Comments:

0 This difference and floating-point instructions are the two differences that
distinguish a business data processing architecture from a scientific data
processing architecture.

Computer Organization Il
CMSC 3833

5.2.2

5.2 Instruction Formats
Lecture 41

e Number of operands: A fixed-length instruction does not necessarily imply a fixed

number of operands.

e Addressing modes: MARIE used two addressing modes: direct and indirect; but there

are many more.

e Byte ordering: Should the least significant byte be stored at the highest or lowest
byte address? Intel elected little endian where the least significant byte has the
smallest address. IBM elected the reverse, the least significant byte has the largest

address.

e Register organization: How many registers should the architecture contain? How
should these registers be organized? How should operands be stored in the CPU?

Little Versus Big Endian

e Asan example, suppose we have the hexadecimal number 0x12345678.
¢ The big endian and small endian arrangements of the bytes are shown below.

Address————» 00 01 10 11
Big Endian 12 34 56 78
Little Endian 78 56 34 12

Figure 5.1 The Hex Value 12345678 Stored in Both Big and Little Endian Formats

Computer Organization Il
CMSC 3833

e A larger example: A computer uses 32-bit integers. The values 0xABCD1234,
0x00FE4321, and 0x10 would be stored sequentially in memory, starting at address

0x200 as below.

5.2 Instruction Formats

e Bytes need to be reordered when transferring data from a big endian machine to a
little endian machine.

5.2.3 Internal Storage in the CPU: Stacks Versus Registers

* The next consideration for architecture design concerns how the CPU will store data.
* We have three choices:

1. Astack architecture

2. Anaccumulator architecture

3. Ageneral purpose register architecture.

* In choosing one over the other, the tradeoffs are simplicity (and cost) of hardware

design with execution speed and ease of use.

Byte Order
Big Little
Address Endian Endian

0x200 AB 34
0x201 CD 12
0x202 12 CD
0x203 34 AB
0x204 00 21

0x205 FE 43
0x206 43 FE
0x207 21 00
0x208 00 10
0x209 00 00
0x20A 00 00
0x20B 10 00

Example 5.2

Computer Organization Il 5.2 Instruction Formats
CMSC 3833 Lecture 41

Stack Architectures:
e QOperation:
0 In a stack architecture, instructions and operands are implicitly taken from
the stack.
0 Astack cannot be accessed randomly.

e Advantages:
0 Compilers are more easily implemented on a machine that supports a stack
architecture.

e Disadvantages:
O Because a stack cannot be accessed randomly, partially complete
computations cannot be accessed, thus, disabling one of the fundamental
characteristic that enables optimization.

Single Accumulator Architectures:
e Operation:
0 In asingle accumulator architecture, every computation is performed by the
single accumulator.
0 For binary operations, one operand is in the accumulator and the other is in
memory. The result is stored in the accumulator.
0 MARIE is an example of a single accumulator architecture.

e Advantages:
0 Simple and easy to implement.

e Disadvantages:
0 When compared to other architectures, a single accumulator architecture is
slow.
0 Contributions to the inefficiency of the architecture is the frequent use of the
bus.

General Purpose Register (GPR) Architectures:
e QOperation:
0 Each register can be used as a single accumulator.
0 Instructions can have both register and memory operands.

e Advantages:
0 Enables optimization in compilers resulting in faster execution.

e Disadvantages:
0 Longerinstructions.
0 Complex implementation.

Computer Organization Il 5.2 Instruction Formats

CMSC 3833

5.24

Lecture 41

Number of Operands and Instruction Length

Most systems today are GPR systems.
There are three types:
— Memory-memory where two or three operands may be in memory.
— Register-memory where at least one operand must be in a register.
— Load-store where no operands may be in memory.
The number of operands and the number of available registers has a direct affect on
instruction length.

Stack machines use one - and zero-operand instructions.

LOAD and STORE instructions require a single memory address operand.
Other instructions use operands from the stack implicitly.

PUSH and POP operations involve only the stack’s top element.

Binary instructions (e.g., ADD, MULT) use the top two items on the stack.

Common instruction formats:

OPCODE only (zero addresses)

OPCODE + 1 Address (usually a memory address)

OPCODE + 2 Addresses (usually registers, or one register and one memory address)
OPCODE + 3 Addresses (usually registers, or combinations of registers and memory)

Stack Architectures:

e Stack architectures require us to think about arithmetic expressions a little
differently.
* We are accustomed to writing expressions using infix notation, such as: Z=X+Y.
e Stack arithmetic requires that we use postfix notation: Z = XY+.
— This is also called reverse Polish notation, (somewhat) in honor of its
Polish inventor, Jan Lukasiewicz (1878 - 1956).
* The principal advantage of postfix notation is that parentheses are not used.
e For example, the infix expression,
Z=(XxY)+(WxU),
becomes:
Z=XYXWUx+
in postfix notation.

Example 5.2. Convert the infix expression 12 <+ (4 + 2) to postfix notation.

12/:\+
4/ \2

Step 1. Convert the infix expression to an expression tree.

Computer Organization Il 5.2 Instruction Formats

CMSC 3833 Lecture 41
1242 + +
Step 2. Perform a post-order traversal of the expression tree.
2
Stack 2 2 6

12 12 12 12 2
Postfix 12 4 2 + -
Expression

Computer Organization Il 5.2 Instruction Formats
CMSC 3833 Lecture 41

Example 5.3. Convert the infix expression (2 + 3) — 6 + 3 to postfix notation.
+ +
2 3 6 3
Step 1. Convert the infix expression to an expression tree.

23+63 = —

Step 2. Perform a post-order traversal of the expression tree.

3
Stack 3 6 6 2
2 2 5 5 5 5 3
2 3 + 6 3 - -
Postfix 2 3 6 3 + -
Expression

Three-address ISA
e Let's see how to evaluate an infix expression using different instruction formats.
e With a three-address ISA, (e.g.,mainframes), the infix expression,
Z=XxY+WxU
might look like this:
MULT R1,X,Y
MULT R2,W,U
ADD Z,R1,R2
Two-address ISA
e Inatwo-address ISA, (e.g.,Intel, Motorola), the infix expression,
Z=XxY+WxU
might look like this:
LOAD R1,X
MULT R1,Y
LOAD R2,W
MULT R2,U
ADD R1,R2
STORE Z,R
One-address ISA
e Inaone-address ISA, like MARIE, the infix expression,
Z=XxY+WxU
looks like this:

Computer Organization Il 5.2 Instruction Formats
CMSC 3833 Lecture 41

LOAD X
MULTY
STORE TEMP
LOAD W
MULT U
ADD TEMP
STORE Z

Zero-address ISA (Stack Architecture)
¢ Inastack ISA, the postfix expression,
Z=XYXWUXx+
might look like this:
PUSH X
PUSHY
MULT
PUSH W
PUSH U
MULT
ADD
PUSH Z

5.2.5 Expanding Opcodes

e Asystem has 16 registers and 4K of memory.

¢ We need 4 bits to access one of the registers. We also need 12 bits for a memory
address.

e If the system is to have 16-bit instructions, we have two choices for our
instructions:

N J \ J \ J N J
Y Y Y Y

Opcode Address1 Address2 Address 3

H_} \ v J
Opcode Address

Figure 5.2 Two Possibilities for a 16-bit Instruction Format

Computer Organization Il 5.2 Instruction Formats
CMSC 3833 Lecture 41

If we allow the length of the opcode to vary, we could create a very rich instruction
set:

0000 R1 R2 R3
15 three-address codes
1110 R1 R2 R3

1111 - escape opcode

1111 0000 R1 R2

e 14 two-address codes
1111 1101 R1 R2

1111 1110 - escape opcode

1111 1110 0000 R1

.. 31 one-address codes
1111 1111 1110 R1

1111 1111 1111 - escape opcode

1111 1111 1111 0000
16 zero-address codes

1111 1111 1111 1111

Example 5.8
e 15 Instructions with three addresses
e 14 Instructions with two addresses
e 31 Instructions with one address
e 16 Instructions with zero addresses

Example: Given 8-bit instructions, is it possible to allow the following to be encoded?
— 3instructions with two 3-bit operands.
— 2 instructions with one 4-bit operand.

Computer Organization Il 5.2 Instruction Formats
CMSC 3833 Lecture 41

— 4 instructions with one 3-bit operand.
We need:
3 x 23 =192 bits for the 3-bit operands
2 x 2% = 32 bits for the 4-bit operands
4 x 23 = 32 bits for the 3-bit operands.
Total: 256 bits

00 xxx xxx

01 xxx xxx

10 xxx xxx

11 - escape opcode
1100 xxxx 2 instructions with one
1101 xxxx 4-bit operand

1110 - escape opcode

1111 - escape opcode

3 instructions with two
3-bit operands

11100 xxx _ | |
11101 xxx 4 instructions with one
11110 xxx 3-bit operand

11111 xxx

10

Computer Organization Il 5.2 Instruction Formats
CMSC 3833 Lecture 41

11

