
Computer Organization II Lecture 39
CMSC 3833 Context Free Grammars

 1

Rest of
Front End

Symbol
Table

ParserLexical
Analysis

token

yylex()

parse tree IR
Intermediate

Representation

source program

Figure 1. Position of the parser in the compiler model

Context free grammars:
A context-free grammar has four components:
1. A set of tokens, known as terminal symbols or terminals.
2. A set of nonterminal symbols or nonterminals.
3. A set of productions where each production consists of a nonterminal symbol, called the left

side of the production, an arrow, and a sequence of tokens and/or nonterminal symbols,
called the right side of the production.

4. A designation of one of the nonterminal symbol as the start symbol.

Notation
1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are italicized.

Example 1. Write a grammar for an arbitrarily long expression consisting of single digits separated
by either the plus sign or the minus sign.

 left side right side
1 list → list + digit
2 list → list – digit
3 list → digit
4 digit → 0
5 digit → 1
6 digit → 2
7 digit → 3
8 digit → 4
9 digit → 5
10 digit → 6
11 digit → 7
12 digit → 8
13 digit → 9

Table 1. Set of productions for the grammar of Example 1.

1. The set of terminal symbols (tokens), T={+ - 0 1 2 3 4 5 6 7 8 9}
2. The set of nonterminal symbols, N={list digit}

Computer Organization II Lecture 39
CMSC 3833 Context Free Grammars

 2

3. The set of productions P. Refer to table 1.
4. The starting nonterminal symbol list.

Example 2. Write a grammar for the language micro.

 left side right side
1 program → begin statement-list end
2 statement-list → statement
3 statement-list → statement-list ; statement
4 statement → id := expression
5 statement → read (id-list)
6 statement → write (expression-list)
7 id-list → id
8 id-list → id-list , id
9 expression-list → expression
10 expression-list → expression-list , expression
11 expression → primary
12 expression → expression additive-operator primary
13 primary → (expression)
14 primary → id
15 primary → intlit
16 additive-operator → +
17 additive-operator → -

Table 2. Set of productions for the micro grammar of Example 2.

1. The set of terminal symbols (tokens), T={begin end read write id intlit ; := () + -}
2. The set of nonterminal symbols,

N={program statement-list statement id-list expression-list expression primary additive-
operator}

3. The set of productions P. Refer to table 2.
4. The starting nonterminal symbol program.

Example 3. Write a grammar for expressions.

 left side right side
1 expression → expression + term
2 expression → expression – term
3 expression → term
4 term → term * factor
5 term → term / factor
6 term → factor
7 factor → (expression)
8 factor → id

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), T={ id () + - * /}
2. The set of nonterminal symbols,

N={expression, term, factor }

Computer Organization II Lecture 39
CMSC 3833 Context Free Grammars

 3

3. The set of productions P. Refer to table 3.
4. The starting nonterminal symbol expression.

Example 3. Write an abbreviated grammar for expressions.

 left side right side
1 E → E + T
2 E → E – T
3 E → T
4 T → T * F
5 T → T / F
6 T → F
7 F → (E)
8 F → id

Table 3. Set of productions expressions

5. The set of terminal symbols (tokens), T={ id () + - * /}
6. The set of nonterminal symbols,

N={E, T, F }
7. The set of productions P. Refer to table 3.
8. The starting nonterminal symbol E.

Derivations

Productions are rewriting rules. Beginning with the start symbol, each rewriting step replaces a
nonterminal by the body of one of its productions.

Example: Consider the grammar of example 3 and derive id+id*id

Rule left
side

 Right side

1 E → E + T
4 → E + T * F
8 → E + T * id
6 → E + F * id
8 → E + id * id
3 → T + id * id
6 → F + id * id
8 → id + id * id

Table 4. Rightmost derivation of id+id*id from E

Consider 𝛼𝛼𝛼𝛼𝛼𝛼 where 𝛼𝛼 and 𝛽𝛽 are strings of grammar symbols that can include both terminal and
nonterminal symbols. A is a nonterminal symbol. Suppose 𝐴𝐴 → 𝛾𝛾 is a production. We write
𝛼𝛼𝛼𝛼𝛼𝛼 ⇒ 𝛼𝛼𝛼𝛼𝛼𝛼. The symbol ⇒means “derives in one step.” When 𝛼𝛼1 ⇒ 𝛼𝛼2 ⇒ ⋯ ⇒ 𝛼𝛼𝑛𝑛rewrites
𝛼𝛼1to 𝛼𝛼𝑛𝑛we say 𝛼𝛼1derives 𝛼𝛼𝑛𝑛. The symbol

∗
⇒means “derives in zero or more steps.” Likewise

the symbol
+
⇒means “derives in one or more steps.”

Computer Organization II Lecture 39
CMSC 3833 Context Free Grammars

 4

1. 𝛼𝛼
∗
⇒ 𝛼𝛼, for any string 𝛼𝛼.

2. If 𝛼𝛼
∗
⇒ 𝛽𝛽 and 𝛽𝛽

∗
⇒ 𝛾𝛾,then 𝛼𝛼

∗
⇒ 𝛾𝛾

Derivation order.

1. 𝛼𝛼
∗

𝑙𝑙𝑙𝑙
�� 𝛽𝛽 In leftmost derivations, the leftmost nonterminal in each sentential form is always

chosen. Parsers that employ leftmost derivations are top-down and often use recursion.
Such parsers are called LL meaning Left-to-right scan of the input source and Leftmost
derivations.

2. 𝛼𝛼
∗

𝑟𝑟𝑟𝑟
�� 𝛽𝛽 In rightmost derivations, the rightmost nonterminal in each sentential form is

always chosen. Parsers that employ rightmost derivations are called bottom-up or LR
parsers for Left-to-right scan of the input source Rightmost derivation.

Parse Trees and Derivations.

 left side right side
1 E → E + E
2 E → E * E
3 E → - E
4 E → (E)
5 E → id

Table 5. Ambiguous grammar for expressions

-
()

id id

+
E E

E
E

Figure 2. Parse tree for –(id+id)

 left side right side
3 E → - E
4 → - (E)
1 → - (E + E)
5 → - (E + id)
5 → - (id + id)

Table 6. Derivation for figure 2.

Computer Organization II Lecture 39
CMSC 3833 Context Free Grammars

 5

Ambiguity.

A grammar is ambiguous if there exists more than one parse tree for some sentence in the
grammar. A grammar is ambiguous if there is more than one rightmost or leftmost derivation of
a sentence in the grammar.

Consider the grammar of table 4 and the sentence id+id*id

 left side right side
1 E → E + E
2 E → E + E * E
5 E → E + E * id
5 E → E + id * id
5 E → id + id * id

Table 7. Rightmost derivation of id+id*id number 1

+

*

id id

id E

E

E

E

E

Figure 3. Rightmost derivation of id+id*id number 1

Computer Organization II Lecture 39
CMSC 3833 Context Free Grammars

 6

 left side right side
2 E → E * E
5 E → E * id
1 E → E + E * id
5 E → E + id * id
5 E → id + id * id

Table 6. Rightmost derivation of id+id*id number 2

+

*

id id

idE E

E E

E

Figure 4. Rightmost derivation of id+id*id number 2

Computer Organization II Lecture 39
CMSC 3833 Syntax Analysis and yacc

 7

Yacc is a tool that will generate a parser given an LR(0) grammar.

Structure of a Yacc Grammar

… definition section …
%%
… rules section …
%%
… user subroutine section …

Symbol Conventions

Typically, non-terminal symbols are given in lowercase and terminal symbols are assigned all
capital letters. For example, the rule:

program → program-head declarations program-body .

would be expressed for a yacc grammar as

program:
 program_head declarations program_body PERIOD

Note that hyphens have been changed to underscores to satisfy the C++ rules for identifiers
and the period at the extreme right on the right hand side (RHS) of the rule has been changed
to a capitalized spelling.

Definition Section

The definition section can contain

• literal block
Declarations necessary for grammar actions and user subroutines are placed in the
literal block. The literal block includes all .h files. A literal block is enclosed between
%{ and %} on separate lines as shown below.
%{
… C++ macro preprocessor definitions, declarations, and code …
%}

Computer Organization II Lecture 39
CMSC 3833 Syntax Analysis and yacc

 8

• %union declarations
The %union declaration associates terminal and non-terminal symbols with C-types.
Identifiers defined in %token declarations and %type declarations are given specific
types to be exploited in actions in the rules section. For example

%union {

string* token;
SList* slist;

}
%%
%token <token> ID
%type <slist> identifier_list
%%
identifier_list:

ID
 {tfs << endl << "identifier_list -> ID(" << (*$1) << ")";
 $$=new SList;
 $$->Insert(*$1);
 }

identifier_list:
identifier_list COMMA ID
 {tfs << endl << "identifier_list -> " << (*$1) << " , ID(" << (*$3) << ")";
 $$->Insert(*$3);
 }

Notes:

1. The symbolic type token is assigned the type string* in the %union
declaration.

2. The symbolic type slist is assigned the type SList* in the %union declaration.
3. The %token declaration defines the terminal symbol ID to have the type

assigned to the symbol type token. The terminal symbol ID now has type
string*.

4. The %type declaration defines the non-terminal symbol identifier_list to have
the type assigned to the symbol type slist. The non-terminal symbol now has
type SList*.

5. The rule, identifier-list → id, expressed in the yacc grammar as
identifier_list:

ID
has symbolic references to actual symbols represented by the terminal and
non-terminal symbols in the rule. $1 refers to the first symbol on the RHS of
the rule. $2, refers to the second symbol on the RHS of the rule. If there were
five symbols on the RHS, $5 would refer to the fifth symbol on the RHS. $$
refers to the non-terminal on the LHS.

In this case, because of prior %union and %token declarations, $1 has type
string* and contains a pointer to the actual string recognized by the scanner
and parser.

Computer Organization II Lecture 39
CMSC 3833 Syntax Analysis and yacc

 9

$$ has type SList* because of prior %union and %type declarations.

We first created a new SList, a string list, and, then we inserted the first
identifier, a string, in the SList.

• %token declarations
%token declarations are used to define terminal symbols. Terminal symbols defined
by %token declarations are made available to a scanner implemented using lex. File
y.tab.h is created when yacc is invoked. File y.tab.h assigns positive integer values to
terminal symbols defined using %token declarations. The values assigned to the
terminal symbols are their token codes not the actual values represented by the
token. A token is an integer code and a spelling. The spelling is the string of
characters recognized by the scanner for that token.

To make the strings recognized by the scanner available to the parser for the example
above, you must add the following statement to the scanner.

yylval.token=new string(yytext);

Variable yytext has type char* and points to the most recent string of characters
recognized by the scanner.

• %type declarations
%type declarations perform much the same function as %token declarations with the
difference that %type declarations are designed for non-terminal symbols whereas
%token declarations are reserved for terminal symbols. %type declarations work in
concert with %union declarations. %union declarations associate a C type with a
symbolic type name. The symbolic type name is associated with a non-terminal
symbol by a %type declaration.

Computer Organization II Lecture 39
CMSC 3833 Syntax Analysis and yacc

 10

Rules Section
The rules section contains

• grammar rules
A rule of the grammar has a Left Hand Side (LHS) and a Right Hand Side (RHS). For
example, consider the following expression grammar below with actions enclosed
between { and }.

• actions containing C++ code

%union {
double real;
string* strlit

}
%token PLUS MINUS STAR SLASH LPAREN RPAREN
%token <real> REALIT
%token <strlit> ID
%type <real> expression term factor
%%
statement:

ID ASSIGN expression {cout << endl << (*$1) “ := ” << $3;}
expression:

term {$$=$1;}
expression:

expression PLUS term {$$=$1+$3;}
expression:

expression MINUS term {$$=$1-$3;}
term:

factor {$$=$1;}
term:

term STAR factor {$$=$1*$3;}
term:

term SLASH factor {$$=$1/$3;}
factor:

REALIT {$$=$1;}
factor:

LPAREN expression RPAREN {$$=$2;}
factor:

MINUS factor {$$=-$1;}

Computer Organization II Lecture 39
CMSC 3833 File t01.mcr

 11

begin read(x); x:=x+2; write(x) end

Computer Organization II Lecture 39
CMSC 3833 File t01.trc

 12

Token:Code=267 Name= BEGIN line= 1 col= 1 Spelling="begin"
Token:Code=269 Name= READ line= 1 col= 7 Spelling="read"
Token:Code=263 Name= LPAREN line= 1 col= 11 Spelling="("
Token:Code=273 Name=IDENTIFIER line= 1 col= 12 Spelling="x"
#007 IDENTIFIER_list->IDENTIFIER
Token:Code=264 Name= RPAREN line= 1 col= 13 Spelling=")"
#005 READ (IDENTIFIER_list)
#002 statement_list->statement
Token:Code=262 Name= SEMICOLON line= 1 col= 14 Spelling=";"
Token:Code=273 Name=IDENTIFIER line= 1 col= 16 Spelling="x"
Token:Code=265 Name= ASSIGN line= 1 col= 17 Spelling=":="
Token:Code=273 Name=IDENTIFIER line= 1 col= 19 Spelling="x"
#014 primary->IDENTIFIER
Token:Code=259 Name= PLUS line= 1 col= 20 Spelling="+"
#016 addop-> +
Token:Code=272 Name= INTLIT line= 1 col= 21 Spelling="2"
#015 primary->INTLIT
#012 expression->primary addop primary
#004 IDENTIFIER := expression
#003 statement_list->statement_list ; statement
Token:Code=262 Name= SEMICOLON line= 1 col= 22 Spelling=";"
Token:Code=270 Name= WRITE line= 1 col= 24 Spelling="write"
Token:Code=263 Name= LPAREN line= 1 col= 29 Spelling="("
Token:Code=273 Name=IDENTIFIER line= 1 col= 30 Spelling="x"
#014 primary->IDENTIFIER
Token:Code=264 Name= RPAREN line= 1 col= 31 Spelling=")"
#011 expression->primary
#009 expression_list->expression
#006 WRITE (expression_list)
#003 statement_list->statement_list ; statement
Token:Code=268 Name= END line= 1 col= 33 Spelling="end"
#001 program->BEGIN statement_list END

Computer Organization II Lecture 39
CMSC 3833 File makemcr

 13

rm mcrpar.cpp
rm mcrlex.cpp
rm *.o
rm mcr
make -f makemicro

Computer Organization II Lecture 39
CMSC 3833 File makemicro

 14

#--
File makemcr creates a micro language compiler
#--
Author: Thomas R. Turner
E-Mail: trturner@uco.edu
Date: January, 2012
#--
Copyright January, 2012 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.
#---
#--
Object files
#--
obj = mcrpar.o \

 mcrlex.o \
 mcr.o

#--
Bind the subset Pascal Scanneer
#--
mcr: ${obj}

 g++ -o mcr ${obj} -lm -ll
#--
File mcr.cpp processes command line arguments
#--
mcr.o: mcr.cpp mcrlex.h

 g++ -c -g mcr.cpp
#--
File mcrlex.cpp is the lex-generated scanner
#--
mcrlex.cpp: mcrlex.l mcrlex.h

 lex mcrlex.l
 mv lex.yy.c mcrlex.cpp

#---
#--
mcrlex.o: mcrlex.cpp mcrlex.h

 g++ -c -g mcrlex.cpp
#--
Create files mcrpar.cpp and mcrtkn.h from file mcrpar.y
#--
mcrtkn.h \
mcrpar.cpp: mcrpar.y

 yacc -d -v mcrpar.y
 mv y.tab.c mcrpar.cpp
 mv y.tab.h mcrtkn.h

#--
Compile the parser mcrpar.y
#--
mcrpar.o: mcrpar.cpp mcrpar.h

 g++ -c -g mcrpar.cpp
#--

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Table 1. Set of productions for the grammar of Example 1.
	id := expression
	read (id-list)
	write (expression-list)
	id
	id-list , id
	expression
	expression-list , expression
	primary
	expression additive-operator primary
	(expression)
	id
	intlit
	+
	-
	Table 2. Set of productions for the micro grammar of Example 2.
	term * factor
	term / factor
	factor
	(expression)
	id
	Table 3. Set of productions expressions
	T * F
	T / F
	F
	(E)
	id
	Table 3. Set of productions expressions
	(E)
	id
	Table 5. Ambiguous grammar for expressions
	- (E + id)
	- (id + id)
	Table 6. Derivation for figure 2.
	Table 7. Rightmost derivation of id+id*id number 1
	Table 6. Rightmost derivation of id+id*id number 2

