Computer Organization Il

CMSC 3833

source program
—_—

Lexical
Analysis

parse tree

Lecture 39

Context Free Grammars

token
Parser
~yylex) 1 _
A
Symbol
Table

Rest of
Front End

Figure 1. Position of the parser in the compiler model

Context free grammars:
A context-free grammar has four components:
1. Aset of tokens, known as terminal symbols or terminals.
2. Aset of nonterminal symbols or nonterminals.
3. A set of productions where each production consists of a nonterminal symbol, called the left

side of the production, an arrow, and a sequence of tokens and/or nonterminal symbols,

called the right side of the production.
4. A designation of one of the nonterminal symbol as the start symbol.

Notation

1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are italicized.

IR

_—
Intermediate

Representation

Example 1. Write a grammar for an arbitrarily long expression consisting of single digits separated
by either the plus sign or the minus sign.

left side
list
list
list
digit
digit
digit
digit
digit
digit
10 digit
11 digit
12 digit
13 digit

OO NOOTULLS WN K

1. The set of terminal symbols (tokens), T={+-01234567 89}

1.

right side
list + digit
list — digit
digit

nOVwooNGOTUA,WNERERO

2. The set of nonterminal symbols, N={list digit}

et of productions for the grammar of Example 1.

Computer Organization Il
CMSC 3833

3. The set of productions P. Refer to table 1.
4. The starting nonterminal symbol /ist.

Example 2. Write a grammar for the language micro.

left side right side

1 program — begin statement-list end

2 statement-list — statement

3 statement-list — statement-list ; statement

4 statement — id := expression

5 statement — read (id-list)

6 statement — write (expression-list)

7 id-list - id

8 id-list - id-list, id

9 expression-list — expression

10 expression-list — expression-list , expression

11 expression — primary

12 expression — expression additive-operator primary

13 primary — (expression)

14 primary - id

15 primary - intlit

16 additive-operator — +

17 additive-operator — -

Table 2. Set of productions for the micro grammar of Example 2.
1. The set of terminal symbols (tokens), T={begin end read write id intlit ; := () + -}
2. The set of nonterminal symbols,
N={program statement-list statement id-list expression-list expression primary additive-
operator}

3. The set of productions P. Refer to table 2.
4. The starting nonterminal symbol program.

Example 3. Write a grammar for expressions.

left side right side
1 expression — expression + term
2 expression — expression —term
3 expression - term
4 term - term * factor
5 term — term [factor
6 term — factor
7 factor — (expression)
8 factor - id

Context Free Grammars

Table 3. Set of productions expressions

1. The set of terminal symbols (tokens), T={iid () + - * /}
2. The set of nonterminal symbols,
N={expression, term, factor }

Computer Organization Il Lecture 39
CMSC 3833 Context Free Grammars

3. The set of productions P. Refer to table 3.
4. The starting nonterminal symbol expression.

Example 3. Write an abbreviated grammar for expressions.

left side right side

1 E - E+T

2 E - E-T

3 E - T

4 T - T*F

5 T - T/F

6 T - F

7 F - (E)

8 F - id

Table 3. Set of productions expressions

5. The set of terminal symbols (tokens), T={id () +-* /}
6. The set of nonterminal symbols,
N={E, T, F}
7. The set of productions P. Refer to table 3.
8. The starting nonterminal symbol E.

Derivations

Productions are rewriting rules. Beginning with the start symbol, each rewriting step replaces a
nonterminal by the body of one of its productions.

Example: Consider the grammar of example 3 and derive id+id*id
Rule left Right side
side
E E+T
E+T*F
E+T*id
E+F*id
E+id *id
T+id *id
F+id *id
id +id *id
Table 4. Rightmost derivation of id+id*id from E

N AN

00O WO O 0 PH K-

Consider aAf where a and f are strings of grammar symbols that can include both terminal and
nonterminal symbols. A is a nonterminal symbol. Suppose A — y is a production. We write
aAfB = ayf. The symbol =means “derives in one step.” When a; = a, = - = a,rewrites

*
a,to a,we say ajderives a,,. The symbol =means “derives in zero or more steps.” Likewise

+
the symbol =means “derives in one or more steps.”

Computer Organization Il Lecture 39
CMSC 3833 Context Free Grammars

1. «a =*> a, for any string .
2. fa=>pBandf >y thena=y

Derivation order.

E3

1. a = fB Inleftmost derivations, the leftmost nonterminal in each sentential form is always
Ilm

chosen. Parsers that employ leftmost derivations are top-down and often use recursion.
Such parsers are called LL meaning Left-to-right scan of the input source and Leftmost

derivations.
*

2. a — B In rightmost derivations, the rightmost nonterminal in each sentential form is
™m

always chosen. Parsers that employ rightmost derivations are called bottom-up or LR
parsers for Left-to-right scan of the input source Rightmost derivation.

Parse Trees and Derivations.

left side right side
E E+E
E*E
-E
(E)
id
Table 5. Ambiguous grammar for expressions

/

u b WN -

Ll Ll

E
E
E
E

E

N/

! T~)
\E
’ ’

Figure 2. Parse tree for —(id+id)

left side right side
E -E
-(E)
-(E+E)
-(E+id)
- (id + id)
Table 6. Derivation for figure 2.

(S2 I 02 B R OV

Ll Ll

Computer Organization Il Lecture 39
CMSC 3833 Context Free Grammars

Ambiguity.
A grammar is ambiguous if there exists more than one parse tree for some sentence in the
grammar. A grammar is ambiguous if there is more than one rightmost or leftmost derivation of

a sentence in the grammar.

Consider the grammar of table 4 and the sentence id+id*id

left side right side
1 E - E+E
2 E - E+E*E
5 E - E+E*id
5 E - E+id*id
5 E - id+id*id

Table 7. Rightmost derivation of id+id*id number 1
+ > E

E

id id

Figure 3. Rightmost derivation of id+id*id number 1

E

*

o m

Computer Organization Il Lecture 39

CMSC 3833 Context Free Grammars
left side right side
2 E - E*E
5 E - E*id
1 E - E+E*id
5 E - E+id*id
5 E - id+id*id

Table 6. Rightmost derivation of id+id*id number 2

*
E + E i

E

o m

id id
Figure 4. Rightmost derivation of id+id*id number 2

Computer Organization Il Lecture 39
CMSC 3833 Syntax Analysis and yacc

Yacc is a tool that will generate a parser given an LR(0) grammar.
Structure of a Yacc Grammar

... definition section ...

%%

... rules section ...

%%

... user subroutine section ...

Symbol Conventions

Typically, non-terminal symbols are given in lowercase and terminal symbols are assigned all
capital letters. For example, the rule:

program - program-head declarations program-body .
would be expressed for a yacc grammar as

program:
program_head declarations program_body PERIOD

Note that hyphens have been changed to underscores to satisfy the C++ rules for identifiers
and the period at the extreme right on the right hand side (RHS) of the rule has been changed
to a capitalized spelling.

Definition Section

The definition section can contain
e literal block
Declarations necessary for grammar actions and user subroutines are placed in the
literal block. The literal block includes all .h files. A literal block is enclosed between
%{ and %} on separate lines as shown below.
%{
... C++ macro preprocessor definitions, declarations, and code ...
%}

Computer Organization Il Lecture 39

CMSC 3833

Syntax Analysis and yacc

%union declarations

The %union declaration associates terminal and non-terminal symbols with C-types.
Identifiers defined in %token declarations and %type declarations are given specific
types to be exploited in actions in the rules section. For example

%union {
string* token;
SList* slist;

}
%%

%token <token> ID
%type <slist> identifier_list

%%

identifier_list:

ID

{tfs << end| << "identifier_list -> ID(" << (*S1) << ")";
SS=new SList;
$$->Insert(*S1);

}

identifier_list:
identifier_list COMMA ID
{tfs << end| << "identifier_list -> " << (*S1) << ", ID(" << (*$3) << ")";
SS->Insert(*53);

}

Notes:

The symbolic type token is assigned the type string* in the %union
declaration.
The symbolic type slist is assigned the type SList* in the %union declaration.
The %token declaration defines the terminal symbol /D to have the type
assigned to the symbol type token. The terminal symbol /D now has type
string*.
The %type declaration defines the non-terminal symbol identifier_list to have
the type assigned to the symbol type slist. The non-terminal symbol now has
type SList*.
The rule, identifier-list = id, expressed in the yacc grammar as
identifier_list:

ID
has symbolic references to actual symbols represented by the terminal and
non-terminal symbols in the rule. $1 refers to the first symbol on the RHS of
the rule. $2, refers to the second symbol on the RHS of the rule. If there were
five symbols on the RHS, S5 would refer to the fifth symbol on the RHS. $$
refers to the non-terminal on the LHS.

In this case, because of prior %union and %token declarations, $1 has type
string* and contains a pointer to the actual string recognized by the scanner
and parser.

Computer Organization Il Lecture 39
CMSC 3833 Syntax Analysis and yacc

SS has type SList* because of prior %union and %type declarations.

We first created a new SList, a string list, and, then we inserted the first
identifier, a string, in the SList.
e %token declarations
%token declarations are used to define terminal symbols. Terminal symbols defined
by %token declarations are made available to a scanner implemented using lex. File
y.tab.h is created when yacc is invoked. File y.tab.h assigns positive integer values to
terminal symbols defined using %token declarations. The values assigned to the
terminal symbols are their token codes not the actual values represented by the
token. A token is an integer code and a spelling. The spelling is the string of
characters recognized by the scanner for that token.

To make the strings recognized by the scanner available to the parser for the example
above, you must add the following statement to the scanner.

yylval.token=new string(yytext);

Variable yytext has type char* and points to the most recent string of characters
recognized by the scanner.

e %type declarations
%type declarations perform much the same function as %token declarations with the
difference that %type declarations are designed for non-terminal symbols whereas
%token declarations are reserved for terminal symbols. %type declarations work in
concert with %union declarations. %union declarations associate a C type with a
symbolic type name. The symbolic type name is associated with a non-terminal
symbol by a %type declaration.

Computer Organization Il

CMSC 3833

Rules Section
The rules section contains

grammar rules

Lecture 39
Syntax Analysis and yacc

A rule of the grammar has a Left Hand Side (LHS) and a Right Hand Side (RHS). For
example, consider the following expression grammar below with actions enclosed

between {and }.
actions containing C++ code

%union {
double real;
string* strlit

}

%token PLUS MINUS STAR SLASH LPAREN RPAREN

%token <real> REALIT
%token <strlit> ID

%type <real> expression term factor

%%
statement:

ID ASSIGN expression {cout << endl << (*$1) “ :=” << $3;}

expression:

term
expression:

expression PLUS term
expression:

expression MINUS term
term:

factor
term:

term STAR factor
term:

term SLASH factor
factor:

REALIT
factor:

LPAREN expression RPAREN
factor:

MINUS factor

10

{$$=51;}
{$5=51+$3;}
{$$=51-$3;}
{$$=51;}
{$5=51*$3;}
{$$=51/%3;}
{$5=51;}
{$$=52;}
{$5=-51;}

Computer Organization Il Lecture 39
CMSC 3833 File t01.mcr

begin read(x); x:=x+2; write(x) end

11

Computer Organization Il

CMSC 3833

Token:Code=267 Name= BEGIN
Token:Code=269 Name= READ
Token:Code=263 Name= LPAREN

Token:Code=273 Name=IDENTIFIER

#007 IDENTIFIER_Nist->IDENTIFIER

Token:Code=264 Name= RPAREN
#005 READ (IDENTIFIER list)
#002 statement list->statement
Token:Code=262 Name= SEMICOLON
Token:Code=273 Name=IDENTIFIER
Token:Code=265 Name= ASSIGN
Token:Code=273 Name=IDENTIFIER
#014 primary->IDENTIFIER

Token:Code=259 Name= PLUS
#016 addop-> +
Token:Code=272 Name= INTLIT

#015 primary->INTLIT
#012 expression->primary addop
#004 IDENTIFIER := expression

#003 statement_list->statement_

Token:Code=262 Name= SEMICOLON
Token:Code=270 Name= WRITE
Token:Code=263 Name= LPAREN

Token:Code=273 Name=IDENTIFIER
#014 primary->IDENTIFIER
Token:Code=264 Name= RPAREN
#011 expression->primary

line= 1 col= 1
line= 1 col= 7
line= 1 col= 11
line= 1 col= 12
line= 1 col= 13
line= 1 col= 14
line= 1 col= 16
line= 1 col= 17
line= 1 col= 19
line= 1 col= 20

line= 1 col= 21
primary

list ; statement

line= 1 col= 22
line= 1 col= 24
line= 1 col= 29
line= 1 col= 30
line= 1 col= 31

#009 expression_list->expression

#006 WRITE (expression_list)

#003 statement list->statement

Token:Code=268 Name= END

list ; statement
line= 1 col= 33

#001 program->BEGIN statement_ list END

12

Lecture 39
File tO1.trc

Spelling="begin™
Spelling=""read"
Spelling="("
Spelling=""x"

Spelling="")"
Spelling="";"
Spelling="x"
Spelling="":="
Spelling="x"
Spelling=""+"

Spelling="2"

Spelling="";"
Spelling="write"
Spelling="("
Spelling="x"

Spelling="")"

Spelling="end"

Computer Organization Il
CMSC 3833

rm mcrpar.cpp

rm mcrlex.cpp

rm *.o

rm mcr

make -f makemicro

13

Lecture 39
File makemcr

Computer Organization Il Lecture 39
CMSC 3833 File makemicro

H

i

File makemcr creates a micro language compiler
H.

Author: Thomas R. Turner
E-Mail: trturner@uco.edu

Date: January, 2012
H.

Copyright January, 2012 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.

#

#

Object files

#

obj = mcrpar.o \
mcrlex.o \
mcr.o

H

H

Bind the subset Pascal Scanneer

#
mcr: S{obj}

g++ -0 mcr ${obj} -Im -lI
H

H

File mcr.cpp processes command line arguments

H.

mcr.o: mcr.cpp mcrlex.h
g++ -Cc -g mcr.cpp

H

Lol

File mcrlex.cpp is the lex-generated scanner
H.

H

mcrlex.cpp: mcrlex.l mcrlex.h
lex mcrlex.|
mv lex.yy.c mcrlex.cpp

* 3

mcrlex.o: mcrlex.cpp mcrlex.h

g++ -c -g mcrlex.cpp
H.

H

Create files mcrpar.cpp and mcrtkn.h from file mcrpar.y
H.

H

mcrtkn.h \

mcrpar.cpp: mcrpar.y
yacc -d -v mcrpar.y
mv y.tab.c mcrpar.cpp
mv y.tab.h mcrtkn.h

#

H

Compile the parser mcrpar.y
H.

mcrpar.o: mcrpar.cpp mcrpar.h
g++ -Cc -g mcrpar.cpp

#.
H#

14

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	Table 1. Set of productions for the grammar of Example 1.
	id := expression
	read (id-list)
	write (expression-list)
	id
	id-list , id
	expression
	expression-list , expression
	primary
	expression additive-operator primary
	(expression)
	id
	intlit
	+
	-
	Table 2. Set of productions for the micro grammar of Example 2.
	term * factor
	term / factor
	factor
	(expression)
	id
	Table 3. Set of productions expressions
	T * F
	T / F
	F
	(E)
	id
	Table 3. Set of productions expressions
	(E)
	id
	Table 5. Ambiguous grammar for expressions
	- (E + id)
	- (id + id)
	Table 6. Derivation for figure 2.
	Table 7. Rightmost derivation of id+id*id number 1
	Table 6. Rightmost derivation of id+id*id number 2

