
Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

lexical analyzer
(scanner)

source program
(character stream)

tokens
(integer code,string)

Figure 1. Lexical analyzer input and output

Input: var a,b,c:real;

Integer code Integer code name String spelling
221 VAR var
200 ID a
300 COMMA ,
200 ID b
300 COMMA ,
200 ID c
301 COLON :
200 ID real
302 SEMICOLON ;

Table 1. Lexical analyzer output for “var a,b,c:real;”

Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

source.l

lex.yy.c

source.cpp

$ mv lex.yy.c source.cpp

lex
$ lex source.l

Figure 2. Invocation of lex

Notes:
1. The input file name always has the suffix .l
2. The output file name is always lex.yy.c
3. The command to invoke the lex utility

$ lex source.l
4. Every c-program is also a c++-program. To change the output file to be a c++-program only

the name needs to be changed.
$ mv lex.yy.c source.cpp

Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

1. Structure of a Lex Specification

… definition section
%%
… rules section
%%
… user subroutines

2. Definition Section
2.1. literal block

%{
… C and C++ comments, directives, and declarations
%}

2.2. definitions
A definition takes the form:

NAME expression

The name can contain letters, digits, and underscores, and must not start with a digit.

In the rules section, patterns may include references to substitutions with the name in
braces, for example, “{NAME}”. The expression corresponding to the name is
substituted literally into pattern. For example.

DIGIT [0-9]
…
%%
{DIGIT}+ process_integer();
{DIGIT}+\.{DIGIT}* |
\.{DIGIT}+ process_real();

Figure 1. A lex specification that containing a definition

3. Rules Section
A rule is a pattern followed by C or C++ code. For example:

substituted literally into pattern. For example.

%%
[\t\n]+ ;
%%

Figure 2. A lex specification that discards white space

Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

3.1. Regular Expression Syntax
3.1.1. Metacharacters

Character Description
. Matches any single character except the newline character ‘\n’.
[] Match any one of the characters with the brackets. A range of characters

is indicated with the “-“ (dash), e.g., “[0-9]” for any of the 10 digits. If
the first character after the open bracket is a dash or a close bracket, it
is not interpreted as a metacharacter If the first character is a circumflex
“^” it changes the meaning to match any character except those within
the brackets. (Such a character class will match a newline unless you
explicitly exclude it.) Other metacharacters have no special meaning
within square brackets except that C escape sequences starting with “\”
are recognized.

* Matches zero or more of the preceding expression. For example, the
pattern

a.*z

matches any string that starts with “a” and ends with “z”, such as “az”,
“abz”, or “alcatraz”.

+ Matches one or more occurrence of the preceding regular expression.
For example,

x+

matches “x”, “xxx”, or “xxxxx”, but not an empty string, and

(ab)+

matches “ab”, “abab”, “ababab”, and so forth.

? Matches zero of one occurrence of the preceding regular expression. For
example:

-?[0-9]+

indicates a whole number with an optional leading unary minus sign.

Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

Character Description
{} A single number “{n}” means n repetitions of the preceding pattern, e.g.,

[A-Z]{3}

matches any three upper case letters.

If the braces contain two numbers separated by a comma, “{n,m}”, they
are a minimum and maximum number of repetitions of the preceding
pattern. For example:

A{1,3}

matches one to three occurrences of the letter “A”. If the second
number is missing, it is taken to be infinite, so “{1,}” means the same as
“+” and “{0,}” means the same as “*”.

\ If the following character is a lowercase letter, then it is a C escape
sequence such as “\t” for tab. Some implementations also allow octal
and hex characters in the form “\123” and “\x3f”. Otherwise “\” quotes
the following character, so”*” matches an asterisk.

() Group a series of regular expressions together. Each of the “*”, “+”, and
“[]” effects only the expression immediately to its left, and “|” normally
affects everything to its left and right. Parentheses can change this, for
example:

(ab|cd)?ef

matches “abef”, “cdef”, or just “|”

| Match either the preceding regular expression or the subsequent regular
expression. For example:

twelve|12

matches either “twelve” or “12”

“…” Match everything withing the quotation marks literally. Metacharacters
other than “\” lose their meaning. For example:

“/*”

matches the two characters

/ Matches the preceding regular expression but only if followed by the
following regular expression. For example:

0/1

Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

matches “0” in the string “01” but does not match anything in the strings
“0” or “02”. Only one slash is permitted per pattern, and a pattern
cannot contain both a slash and a trailing “$”

Character Description
^ As the first character of a regular expression, it matches the beginning of

a line; it is also used for negation within square brackets. Otherwise not
special.

$ As the last character of a regular expression, it matches the end of a line
– otherwise it is not special. The “$” has the same meaning as “/\n”
when at the end of an expression.

<> A name of list of names in angle brackets at the beginning of a pattern
makes that pattern apply only in the given start states.

4. User Subroutines

User subroutines are C and C++ functions. Function prototypes must appear before their
implementations in this section.

%{
#include <string>
#define ID 1
#define READ 2
#define WRITE 3
#define BEGAN 4
#define END 5
int TokenMgr(int t);
%}
%%
[\t\n]+ ;
[a-z]+ return TokenMgr(ID);
%%
int TokenMgr(int t)
{ string rw[]={“”,””,”read”,”write”,”begin”,”end”};
 for (int k=2;k<6;k++) if ((string)yytext==rw[k]) return k;
 return t;
}

Figure 2. A lex specification containing a user subroutine

5. lex and C++

The Unix utility lex creates a C program and is designed to work with other C programs. Care
must be exercised to employ lex in a C++ environment. Directives shown in figure 3 must be
included to ensure the function yylex, the lexical analyzer produced by lex can be called from
a C++ program.

#ifdef __cplusplus
extern "C"
#endif
int yylex (void);

Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

Figure 3. C++ Preprocessor directives allowing function yylex to be called from a C++
program

Computer Organization II Lexical Analysis and Lex
CMSC 3833 Lecture 38

6. lex and files

Since lex creates a C program, it uses standard input/output text file definitions developed
for C in include file <cstdio>. If you wish to have your scanner find tokens in an external file,
you will have to redirect the standard input file from the keyboard to a FILE as defined in the
include file <cstdio>. Refer to the code fragment included in figure 4.

#include <cstdio>
…
char ifn[255]; //Input file name
FILE* i=fopen(ifn,”r”); //Open the file whose name is stored in string ifn.
…
yyin=i; // Redirect the input from the keyboard to FILE i
 // Variable yyin is the name given to the standard
input file

// by lex.
fclose(i); //Close FILE i.

Figure 4. lex and the standard input file

Invoking lex and makefiles
Typically, a programmer will want to automate the creation of a program that includes a
scanner. An example makefile is given in figure 5. Note that the program consists of two
source files, pas.cpp and paslex.l. File pas.cpp is compiled in the normal way. The utility lex
creates file lex.yy.c from pasles.l. Then, file lex.yy.c is renamed to paslex.cpp. Next,
paslex.cpp is translated by the C++ compiler to object file paslex.o. Note that every C program
is also a C++ program. Finally, the two object files pas.o and paslex.o are bound into and
executable program in file pas.

	String spelling
	Integer code name
	Integer code

