
Computer Organization II Context Free Grammars
CMSC 3833 Lecture 37

 1

• Programming language grammars are employed to specify a programming language.
• An assembly language is programming language

Context free grammars:
A context-free grammar has four components:

1. A set of tokens, known as terminal symbols.
2. A set of nonterminal symbols or nonterminals.
3. A set of productions, or rules, where each production consists of a nonterminal symbol,

called the left side or the production, an arrow, and a sequence of tokens and nonterminal
symbols, called the right side of the production.

4. A designation of one of the nonterminal symbols as the start symbol.

Notation:

1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are italicized.

Example 1:

Write a grammar for an arbitrarily long expression consisting of single digs separated by either
the plus sign or the minus sign.

 left side right side
1 list → list + digit
2 list → list - digit
3 list → digit
4 digit → 0
5 digit → 1
6 digit → 2
7 digit → 3
8 digit → 4
9 digit → 5

10 digit → 6
11 digit → 7
12 digit → 8
13 digit → 9

Table 1. 𝑃𝑃, the set of productions

For this grammar,
1. 𝑇𝑇, the set of terminal symbols, called tokens, 𝑇𝑇 = {+,−, 𝟎𝟎, 𝟏𝟏, 𝟐𝟐, 𝟑𝟑, 𝟒𝟒, 𝟓𝟓, 𝟔𝟔, 𝟕𝟕, 𝟖𝟖, 𝟗𝟗}
2. 𝑁𝑁, the set of nonterminal symbol, 𝑁𝑁 = {𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}
3. 𝑃𝑃, the set of productions. Refer to Table 1.
4. The starting nonterminal symbol is list.

Computer Organization II Context Free Grammars
CMSC 3833 Lecture 37

 2

Example 2:
Write a grammar for arithmetic expressions.

 left side right side
1 expression → expression + term
2 expression → expression - term
3 expression → term
4 term → term * factor
5 term → term / factor
6 term → factor
7 factor → (expression)
8 factor → id

Table 2. Set of productions for expressions

For this grammar,
1. 𝑇𝑇, the set of terminal symbols, called tokens, 𝑇𝑇 = {+,−,∗,/, (,),id}
2. 𝑁𝑁, the set of nonterminal symbol, 𝑁𝑁 ={expression,term,factor}
3. 𝑃𝑃, the set of productions. Refer to Table 2.
4. The starting nonterminal symbol is expression.

Example 3:

Perform left-most derivation of the arithmetic expression id1+id2*id3

String of terminals and nonterminals Rule used to reduce a handle of the string
id1+id2*id3 Terminal string
factor+ id2*id3 8 factor → id
term+ id2*id3 6 term → factor
expression+ id2*id3 3 expression → term
expression+ factor*id3 8 factor → id
expression+ term*id3 6 term → factor
expression+ term*factor 8 factor → id
expression+ term 4 term → term * factor
expression 1 expression → expression + term

Computer Organization II Context Free Grammars
CMSC 3833 Lecture 37

 3

Grammar for MARIE
Rule Left Side Right Side

1 program → statement-list
2 statement-List → statement
3 statement-List → statement-list statement
4 statement → directive
5 statement → labeled-item
6 statement → item
7 directive → org hexlit
8 labeled-item → label item
9 label → identifier ,

10 item → instruction
11 item → data-definition
12 instruction → JnS operand
13 instruction → Load operand
14 instruction → Store operand
15 instruction → Add operand
16 instruction → Subt operand
17 instruction → Input
18 instruction → Output
19 instruction → Halt
20 instruction → Skipcond operand
21 instruction → Jump operand
22 instruction → Clear
23 instruction → AddI operand
24 instruction → JumpI operand
25 instruction → LoadI operand
26 instruction → StoreI operand
27 instruction → END
28 operand → hexlit
29 operand → identifier
30 data-definition → HEX hexlit
31 data-definition DEC hexlit

Computer Organization II Context Free Grammars
CMSC 3833 Lecture 37

 4

Token Definition
identifier [a-zA-Z][a-zA-Z0-9]*
intlit [1-9][0-9]*
hexlit [0][0-9a-fA-F]*

Rule Left Side Right Side Action

1 program → statement-list Write the memory image to file source.mex.
2 statement-list → statement
3 statement-list → statement-list

statement

4 statement → directive
5 statement → labeled-item
6 statement → item
7 directive → org hexlit • Convert the integer to 16-bit two’s

complement form.
• Assign the integer to the initial address.
• Assign the integer to the current address.

8 labeled-item → label item
9 label → identifier , Define the identifier in the Label Table by

assigning the current address to the identifier.
10 item → instruction Increment the current address
11 item → data-definition Increment the current address
12 instruction → JnS operand Create 16-bit instruction. Bits 15-12 are

operator. Assign the JnS opcode (0000) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

13 instruction → Load operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the Load opcode (0001) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

14 instruction → Store operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the Store opcode (0010) to
the operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

15 instruction → Add operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the Add opcode (0011) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

Computer Organization II Context Free Grammars
CMSC 3833 Lecture 37

 5

Rule Left Side Right Side Action
16 instruction → Subt operand Create 16-bit instruction. Bits 15-12 are

operator. Assign the Subt opcode (0100) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

17 instruction → Input Create 16-bit instruction. Bits 15-12 are
operator. Assign the Input opcode (0101) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

18 instruction → Output Create 16-bit instruction. Bits 15-12 are
operator. Assign the Output opcode (0110)
to the operator field of the instruction.
Assign the 0x000 to the remaining 12 bits of
the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

19 instruction → Halt Create 16-bit instruction. Bits 15-12 are
operator. Assign the Halt opcode (0111) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

20 instruction → Skipcond operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the Skipcond opcode
(1000) to the operator field of the
instruction. Assign the operand to the
remaining 12 bits of the instruction, bits 11-
0. Assign the instruction to the current
address in memory.

21 instruction → Jump operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the Jump opcode (1001) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

22 instruction → Clear Create 16-bit instruction. Bits 15-12 are
operator. Assign the Clear opcode (1010) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

Computer Organization II Context Free Grammars
CMSC 3833 Lecture 37

 6

Rule Left Side Right Side Action
23 instruction → AddI operand Create 16-bit instruction. Bits 15-12 are

operator. Assign the AddI opcode (1011) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

24 instruction → JumpI operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the JumpI opcode (1100)
to the operator field of the instruction.
Assign the operand to the remaining 12 bits
of the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

25 instruction → LoadI operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the LoadI opcode (1101) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

26 instruction → StoreI operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the StoreI opcode (1110)
to the operator field of the instruction.
Assign the operand to the remaining 12 bits
of the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

27 Instruction → END
28 operand → hexlit Convert the hexlit to a 16-bit two’s

complement integer.
29 operand → identifier Reference the identifier in the Label Table

by assigning the current address to the
identifier’s reference list.

30 data-definition → hex hexlit Convert the hexlit to a 16-bit two’s
complement integer.

31 data-definition → dec intlit Convert the intlit to a 16-bit two’s
complement integer.

