Computer Organization Il Context Free Grammars
CMSC 3833 Lecture 37

e Programming language grammars are employed to specify a programming language.
e An assembly language is programming language

Context free grammars:
A context-free grammar has four components:

1. Aset of tokens, known as terminal symbols.

2. Aset of nonterminal symbols or nonterminals.

3. A set of productions, or rules, where each production consists of a nonterminal symbol,
called the left side or the production, an arrow, and a sequence of tokens and nonterminal
symbols, called the right side of the production.

4. A designation of one of the nonterminal symbols as the start symbol.

Notation:
1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are italicized.

Example 1:
Write a grammar for an arbitrarily long expression consisting of single digs separated by either
the plus sign or the minus sign.

left side right side
1 | list — | list + digit
2 | list — | list - digit
3 | list — | digit
4 | digit - |0
5 | digit - |1
6 | digit - |2
7 | digit - |3
8 | digit - | 4
9 | digit - |5
10 | digit - |6
11 | digit - |7
12 | digit - |8
13 | digit -9

Table 1. P, the set of productions

For this grammar,

1. T, the set of terminal symbols, called tokens, T = {+,—,0,1,2,3,4,5,6,7, 8,9}
2. N, the set of nonterminal symbol, N = {list, digit}

3. P, the set of productions. Refer to Table 1.

4. The starting nonterminal symbol is /ist.
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Example 2:
Write a grammar for arithmetic expressions.
left side right side

1 | expression | — | expression + term

2 | expression | — | expression - term

3 | expression | — | term

4 | term — | term * factor

5 | term - | term [ factor

6 | term — | factor

7 | factor — | ( expression)

8 | factor - |id

Table 2. Set of productions for expressions

For this grammar,

1. T, the set of terminal symbols, called tokens, T = {+, —,

%/, () id}

2. N, the set of nonterminal symbol, N ={expression,term,factor}
3. P, the set of productions. Refer to Table 2.
4. The starting nonterminal symbol is expression.

Example 3:

Perform left-most derivation of the arithmetic expression id;+id,*id;

String of terminals and nonterminals Rule used to reduce a handle of the string
idy+ido*ids Terminal string

factor+ idy*ids 8 | factor - | id

term+ id>*ids 6 | term - | factor

expression+ idx*ids 3 | expression | = | term

expression+ factor*ids 8 | factor - | id

expression+ term¥ids 6 | term - | factor

expression+ term*factor 8 | factor - | id

expression+ term 4 | term — | term * factor
expression 1 | expression | — | expression + term
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Rule | Left Side Right Side
1 program - statement-list
2 statement-List - statement
3 statement-List - statement-list statement
4 | statement - directive
5 | statement - labeled-item
6 statement - item
7 | directive - org hexlit
8 | labeled-item - label item
9 label - identifier,
10 | item - instruction
11 | item - data-definition
12 | instruction - InS operand
13 | instruction - Load operand
14 | instruction - Store operand
15 | instruction - Add operand
16 | instruction - Subt operand
17 | instruction - Input
18 | instruction - Output
19 | instruction - Halt
20 | instruction - Skipcond operand
21 | instruction - Jump operand
22 | instruction - Clear
23 | instruction - AddlI operand
24 | instruction - Jumpl operand
25 | instruction - Loadl operand
26 | instruction - Storel operand
27 | instruction - END
28 | operand - hexlit
29 | operand - identifier
30 | data-definition - HEX hexlit
31 | data-definition DEC hexlit
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Token Definition

identifier [a-zA-Z][a-zA-Z0-9]*

intlit [1-9][0-9]*

hexlit [0][0-9a-fA-F]*

Rule | Left Side Right Side Action

1 | program — | statement-list | Write the memory image to file source.mex.

2 statement-list — | statement

3 statement-list — | statement-list

statement

4 | statement — | directive

5 statement — | labeled-item

6 statement - | item

7 | directive — | org hexlit e Convert the integer to 16-bit two’s

complement form.
e Assign the integer to the initial address.
e Assign the integer to the current address.

8 labeled-item — | label item

9 label - | identifier, Define the identifier in the Label Table by
assigning the current address to the identifier.

10 | item — | instruction Increment the current address

11 | item — | data-definition | Increment the current address

12 | instruction — | JnS operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the JnS opcode (0000) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

13 | instruction — | Load operand | Create 16-bit instruction. Bits 15-12 are
operator. Assign the Load opcode (0001) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

14 | instruction — | Store operand | Create 16-bit instruction. Bits 15-12 are
operator. Assign the Store opcode (0010) to
the operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

15 | instruction — | Add operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the Add opcode (0011) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.
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Rule

Left Side

Right Side

Action

16

instruction

Subt operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Subt opcode (0100) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

17

instruction

Input

Create 16-bit instruction. Bits 15-12 are
operator. Assignthe Input opcode (0101) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

18

instruction

Output

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Output opcode (0110)
to the operator field of the instruction.
Assign the 0x000 to the remaining 12 bits of
the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

19

instruction

Halt

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Halt opcode (0111) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

20

instruction

Skipcond operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Skipcond opcode
(1000) to the operator field of the
instruction.  Assign the operand to the
remaining 12 bits of the instruction, bits 11-
0. Assign the instruction to the current
address in memory.

21

instruction

Jump operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Jump opcode (1001) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

22

instruction

Clear

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Clear opcode (1010) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.
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Rule

Left Side

Right Side

Action

23

instruction

AddlI operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Addl opcode (1011) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

24

instruction

Jumpl operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Jumpl opcode (1100)
to the operator field of the instruction.
Assign the operand to the remaining 12 bits
of the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

25

instruction

Loadl operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Loadl opcode (1101) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

26

instruction

Storel operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Storel opcode (1110)
to the operator field of the instruction.
Assign the operand to the remaining 12 bits
of the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

27

Instruction

END

28

operand

hexlit

Convert the hexlit to a 16-bit two’s
complement integer.

29

operand

identifier

Reference the identifier in the Label Table
by assigning the current address to the
identifier’s reference list.

30

data-definition

hex hexlit

Convert the hexlit to a 16-bit two’s
complement integer.

31

data-definition

dec intlit

Convert the intlit to a 16-bit two’s
complement integer.




