Computer Organization Il Context Free Grammars
CMSC 3833 Lecture 37

e Programming language grammars are employed to specify a programming language.
e An assembly language is programming language

Context free grammars:
A context-free grammar has four components:

1. Aset of tokens, known as terminal symbols.

2. Aset of nonterminal symbols or nonterminals.

3. A set of productions, or rules, where each production consists of a nonterminal symbol,
called the left side or the production, an arrow, and a sequence of tokens and nonterminal
symbols, called the right side of the production.

4. A designation of one of the nonterminal symbols as the start symbol.

Notation:
1. Terminal symbols are expressed in bold print.
2. Nonterminal symbols are italicized.

Example 1:
Write a grammar for an arbitrarily long expression consisting of single digs separated by either
the plus sign or the minus sign.

left side right side
1 | list — | list + digit
2 | list — | list - digit
3 | list — | digit
4 | digit - |0
5 | digit - |1
6 | digit - |2
7 | digit - |3
8 | digit - | 4
9 | digit - |5
10 | digit - |6
11 | digit - |7
12 | digit - |8
13 | digit -9

Table 1. P, the set of productions

For this grammar,

1. T, the set of terminal symbols, called tokens, T = {+,—,0,1,2,3,4,5,6,7, 8,9}
2. N, the set of nonterminal symbol, N = {list, digit}

3. P, the set of productions. Refer to Table 1.

4. The starting nonterminal symbol is /ist.

Computer Organization Il

Context Free Grammars

CMSC 3833 Lecture 37
Example 2:
Write a grammar for arithmetic expressions.
left side right side

1 | expression | — | expression + term

2 | expression | — | expression - term

3 | expression | — | term

4 | term — | term * factor

5 | term - | term [factor

6 | term — | factor

7 | factor — | (expression)

8 | factor - |id

Table 2. Set of productions for expressions

For this grammar,

1. T, the set of terminal symbols, called tokens, T = {+, —,

%/, () id}

2. N, the set of nonterminal symbol, N ={expression,term,factor}
3. P, the set of productions. Refer to Table 2.
4. The starting nonterminal symbol is expression.

Example 3:

Perform left-most derivation of the arithmetic expression id;+id,*id;

String of terminals and nonterminals Rule used to reduce a handle of the string
idy+ido*ids Terminal string

factor+ idy*ids 8 | factor - | id

term+ id>*ids 6 | term - | factor

expression+ idx*ids 3 | expression | = | term

expression+ factor*ids 8 | factor - | id

expression+ term¥ids 6 | term - | factor

expression+ term*factor 8 | factor - | id

expression+ term 4 | term — | term * factor
expression 1 | expression | — | expression + term

Computer Organization Il
CMSC 3833

Grammar for MARIE

Context Free Grammars
Lecture 37

Rule | Left Side Right Side
1 program - statement-list
2 statement-List - statement
3 statement-List - statement-list statement
4 | statement - directive
5 | statement - labeled-item
6 statement - item
7 | directive - org hexlit
8 | labeled-item - label item
9 label - identifier,
10 | item - instruction
11 | item - data-definition
12 | instruction - InS operand
13 | instruction - Load operand
14 | instruction - Store operand
15 | instruction - Add operand
16 | instruction - Subt operand
17 | instruction - Input
18 | instruction - Output
19 | instruction - Halt
20 | instruction - Skipcond operand
21 | instruction - Jump operand
22 | instruction - Clear
23 | instruction - AddlI operand
24 | instruction - Jumpl operand
25 | instruction - Loadl operand
26 | instruction - Storel operand
27 | instruction - END
28 | operand - hexlit
29 | operand - identifier
30 | data-definition - HEX hexlit
31 | data-definition DEC hexlit

Computer Organization Il

Context Free Grammars

CMSC 3833 Lecture 37
Token Definition

identifier [a-zA-Z][a-zA-Z0-9]*

intlit [1-9][0-9]*

hexlit [0][0-9a-fA-F]*

Rule | Left Side Right Side Action

1 | program — | statement-list | Write the memory image to file source.mex.

2 statement-list — | statement

3 statement-list — | statement-list

statement

4 | statement — | directive

5 statement — | labeled-item

6 statement - | item

7 | directive — | org hexlit e Convert the integer to 16-bit two’s

complement form.
e Assign the integer to the initial address.
e Assign the integer to the current address.

8 labeled-item — | label item

9 label - | identifier, Define the identifier in the Label Table by
assigning the current address to the identifier.

10 | item — | instruction Increment the current address

11 | item — | data-definition | Increment the current address

12 | instruction — | JnS operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the JnS opcode (0000) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

13 | instruction — | Load operand | Create 16-bit instruction. Bits 15-12 are
operator. Assign the Load opcode (0001) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

14 | instruction — | Store operand | Create 16-bit instruction. Bits 15-12 are
operator. Assign the Store opcode (0010) to
the operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

15 | instruction — | Add operand Create 16-bit instruction. Bits 15-12 are
operator. Assign the Add opcode (0011) to the
operator field of the instruction. Assign the
operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction to
the current address in memory.

Computer Organization Il

CMSC 3833

Context Free Grammars
Lecture 37

Rule

Left Side

Right Side

Action

16

instruction

Subt operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Subt opcode (0100) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

17

instruction

Input

Create 16-bit instruction. Bits 15-12 are
operator. Assignthe Input opcode (0101) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

18

instruction

Output

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Output opcode (0110)
to the operator field of the instruction.
Assign the 0x000 to the remaining 12 bits of
the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

19

instruction

Halt

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Halt opcode (0111) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

20

instruction

Skipcond operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Skipcond opcode
(1000) to the operator field of the
instruction. Assign the operand to the
remaining 12 bits of the instruction, bits 11-
0. Assign the instruction to the current
address in memory.

21

instruction

Jump operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Jump opcode (1001) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

22

instruction

Clear

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Clear opcode (1010) to
the operator field of the instruction. Assign
the 0x000 to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

Computer Organization Il

CMSC 3833

Context Free Grammars
Lecture 37

Rule

Left Side

Right Side

Action

23

instruction

AddlI operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Addl opcode (1011) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

24

instruction

Jumpl operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Jumpl opcode (1100)
to the operator field of the instruction.
Assign the operand to the remaining 12 bits
of the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

25

instruction

Loadl operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Loadl opcode (1101) to
the operator field of the instruction. Assign
the operand to the remaining 12 bits of the
instruction, bits 11-0. Assign the instruction
to the current address in memory.

26

instruction

Storel operand

Create 16-bit instruction. Bits 15-12 are
operator. Assign the Storel opcode (1110)
to the operator field of the instruction.
Assign the operand to the remaining 12 bits
of the instruction, bits 11-0. Assign the
instruction to the current address in
memory.

27

Instruction

END

28

operand

hexlit

Convert the hexlit to a 16-bit two’s
complement integer.

29

operand

identifier

Reference the identifier in the Label Table
by assigning the current address to the
identifier’s reference list.

30

data-definition

hex hexlit

Convert the hexlit to a 16-bit two’s
complement integer.

31

data-definition

dec intlit

Convert the intlit to a 16-bit two’s
complement integer.

