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We apply the definition of Big-𝑂𝑂 to MARIE programs.  Please review the definition of Big-𝑂𝑂 
below.  
 
Big-𝑂𝑂 Notation 

DEFINITION 1 
 

Let 𝑇𝑇 and 𝑓𝑓 be functions from the set of integers or the set of real numbers to 
the set of real numbers.  We say that 𝑇𝑇(𝑛𝑛) is 𝑂𝑂(𝑓𝑓(𝑛𝑛)) if there are positive 
constants 𝑛𝑛0 and 𝐶𝐶 such that 

|𝑇𝑇(𝑛𝑛)| ≤ 𝐶𝐶|𝑓𝑓(𝑛𝑛)| 
whenever  

𝑛𝑛 > 𝑛𝑛0 
[This is read as “𝑇𝑇(𝑛𝑛) is big-oh of 𝑓𝑓(𝑛𝑛).”] 

 
• The constants C and 𝑛𝑛0 in the definition of big-O notation are called witnesses to the 

relationship 𝑇𝑇(𝑛𝑛) is 𝑂𝑂�𝑓𝑓(𝑛𝑛)�.   
• There are infinitely many witnesses to the relationship 𝑇𝑇(𝑛𝑛) is 𝑂𝑂�𝑓𝑓(𝑛𝑛)�. 

Finding 𝐶𝐶, 𝑛𝑛0, and 𝑓𝑓(𝑛𝑛) for 𝑇𝑇(𝑛𝑛) 
Steps:  Assume 𝑻𝑻(𝒏𝒏) = 𝟑𝟑

𝟐𝟐
𝒏𝒏𝟐𝟐 + 𝟓𝟓

𝟐𝟐
𝒏𝒏 + 𝟏𝟏𝟏𝟏 

1. Find 𝑓𝑓(𝑛𝑛).  Let 𝑓𝑓(𝑛𝑛) be the fastest growing term in 𝑇𝑇(𝑛𝑛) with its coefficient removed. 
𝒇𝒇(𝒏𝒏) = 𝒏𝒏𝟐𝟐  

2. Find 𝐶𝐶. 
2.1. 𝐶𝐶 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + ∆, where ∆= 1 (in many cases). 

2.2. 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = lim
𝑛𝑛→∞

𝑇𝑇(𝑛𝑛)
𝑓𝑓(𝑛𝑛)

= lim
𝑛𝑛→∞

𝟑𝟑
𝟐𝟐𝒏𝒏

𝟐𝟐+𝟓𝟓𝟐𝟐𝒏𝒏+𝟏𝟏𝟏𝟏

𝑛𝑛2
= 3

2
 

2.3. In practice, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the coefficient of the fastest growing term in 𝑇𝑇(𝑛𝑛). 
3. 𝐶𝐶 = Δ + 3

2
= 1 + 3

2
= 5

2
 

4. Find 𝑛𝑛0. 
4.1. Solve |𝑇𝑇(𝑛𝑛0)| ≤ 𝐶𝐶|𝑓𝑓(𝑛𝑛0)| 

3
2
𝑛𝑛02 +

5
2
𝑛𝑛0 + 10 ≤

5
2
𝑛𝑛02 

𝑛𝑛02 −
5
2
𝑛𝑛0 − 10 ≥ 0 

𝑛𝑛0 =

⎢
⎢
⎢
⎡5
2 ∓

��5
2�

2
+ 4 ∙ 1 ∙ 10

2
⎥
⎥
⎥
⎤

,𝑛𝑛0 > 0 

𝑛𝑛0 = ⌈4.65⌉,𝑛𝑛0 > 0 
𝑛𝑛0 = 5 

 
4.2. Choose an integer value for 𝑛𝑛0.  Let 𝑛𝑛0 = 5. 

We have shown that 𝑻𝑻(𝒏𝒏) = 𝟑𝟑
𝟐𝟐
𝒏𝒏𝟐𝟐 + 𝟓𝟓

𝟐𝟐
𝒏𝒏 + 𝟏𝟏𝟏𝟏 is 𝑶𝑶(𝒏𝒏𝟐𝟐) because we have found witnesses 𝑪𝑪 = 5

2
 

and 𝑛𝑛0 = 5. 
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Now we apply the definition to a MARIE program that divides a positive integer by two. 
 

input 
             store dividend 
test,  subt  divisor 
             skipcond 000 
             jump inc  
             load quotient 
             output 
             halt 
inc,         store dividend 
             load quotient 
             add one 
             store quotient 
             load dividend 
             jump test 
dividend,   dec 0 
divisor,    dec 2 
quotient,   dec 0 
one,        dec 1 
 
Each instructions executed is assigned unit (1) cost.  Instructions in black are executed only once.  
Instructions in blue are executed, possibly, more than once.  The question is, how many times are 
the instructions shown in blue executed?  If we examine the code, we find that the loop adds one 
to the quotient every time two is subtracted from the dividend – in effect, this code divides a 
positive integer value by two.  Thus, the code in blue is executed half as many times as the input 
value stored in the dividend.  We will call the dividend 𝑛𝑛 to be consistent with our terminology for 
time complexity. 
 

Line Code Cost 
1    input 1 
2    store dividend 1 
3 test,   subt divisor 𝑛𝑛/2 
4    skipcond 000 𝑛𝑛/2 
5   jump inc 𝑛𝑛/2 
6  load quotient 1 
7  output 1 
8   halt 1 
9 inc,   store dividend 𝑛𝑛/2 

10    load quotient 𝑛𝑛/2 
11    add one 𝑛𝑛/2 
12    store quotient 𝑛𝑛/2 
13    load dividend 𝑛𝑛/2 
14    jump test 𝑛𝑛/2 
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Line Code Cost 
15 dividend,  dec 0 0 
16 divisor,  dec 2 0 
17 quotient,  dec 0 0 
18 one,   dec 1 0 

 Total 𝑇𝑇(𝑛𝑛) =
9
2
𝑛𝑛 + 5 

 
1. Find 𝒇𝒇(𝒏𝒏) = 𝒏𝒏 
2. Find 𝑪𝑪 = 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎+∆= 9

2
+ 1 = 11

2
 

3. Solve for 𝒏𝒏𝟎𝟎 |𝑻𝑻(𝒏𝒏𝟎𝟎)| = 𝑪𝑪|𝒇𝒇(𝒏𝒏𝟎𝟎)| 
�𝟗𝟗
𝟐𝟐
𝒏𝒏𝟎𝟎 + 𝟓𝟓� = 11

2
|𝒏𝒏𝟎𝟎|  

𝟓𝟓 = 𝒏𝒏𝟎𝟎  
We have shown that 𝑻𝑻(𝒏𝒏) = 𝟗𝟗

𝟐𝟐
𝒏𝒏 + 𝟓𝟓 is 𝑶𝑶(𝒏𝒏) because we have found witnesses 𝑪𝑪 = 11

2
 and 𝑛𝑛0 =

5. 
 


