Computer Organization Il Computing O(n) Example
CMSC 3833 Project p01

We apply the definition of Big-O to MARIE programs. Please review the definition of Big-O
below.

Big-O Notation
DEFINITION 1 LetT and f be functions from the set of integers or the set of real numbers to
the set of real numbers. We say that T (n) is O(f (n)) if there are positive
constants ny and C such that
IT()| < Clf (M)
whenever
n>n,
[This is read as “T(n) is big-oh of f(n).”]

e The constants C and ng in the definition of big-O notation are called witnesses to the
relationship T'(n) is O(f(n)).
e There are infinitely many witnesses to the relationship T'(n) is O(f(n)).
Finding C, ng, and f(n) for T (n)
Steps: Assume T(n) = ;nz + gn +10
1. Find f(n). Let f(n) be the fastest growing term in T'(n) with its coefficient removed.

f(n) =n?
2. Find C.
2.1. C = Cpjpn + A, where A= 1 (in many cases).
3n2+3n+10
22. Cpyin = lim T8 = Jjm 22— =3
n—o

of(M) now n2
2.3. In practice, C,p,;n is the coefficient of the fastest growing term in T (n).
5

3. C=a+2=143=2
2 2 2
Find n.
4.1. Solve |T(ny)| < C|f (ny)|
Eno +En0 + 10 S Eno

, 5
n0—5n0—1020

5_ [/5\?
_[7+\/(7) +4-1-1o]
n0—| 2

Ng = [4.65],710 > O
no = 5

,Mg >0

4.2. Choose an integer value for n,. Letny = 5.

We have shown that T(n) = gnz + gn + 10 is 0(n?) because we have found witnesses C =
andny = 5.

Computer Organization Il Computing O(n) Example
CMSC 3833 Project p01

Now we apply the definition to a MARIE program that divides a positive integer by two.

input
store dividend
test, subt divisor
skipcond 000
jump inc
load quotient
output
halt
inc, store dividend
load quotient
add one
store quotient
load dividend
jump test
dividend, decO
divisor, dec 2
quotient, decO
one, dec1

Each instructions executed is assigned unit (1) cost. Instructions in black are executed only once.
Instructions in blue are executed, possibly, more than once. The question is, how many times are
the instructions shown in blue executed? If we examine the code, we find that the loop adds one
to the quotient every time two is subtracted from the dividend — in effect, this code divides a
positive integer value by two. Thus, the code in blue is executed half as many times as the input
value stored in the dividend. We will call the dividend n to be consistent with our terminology for
time complexity.

Line | Code Cost
1 input 1
2 store dividend 1
3 | test, subt divisor n/2
L} skipcond 000 n/2
5 jump inc n/2
6 load quotient 1
7 output 1
8 halt 1
9 |inc, store dividend n/2
10 load quotient n/2
11 add one n/2
12 store quotient n/2
13 load dividend n/2
14 jump test n/2

Computer Organization Il

Computing O(n) Example

CMSC 3833 Project p01

Line | Code Cost

15 | dividend, decO 0

16 | divisor, dec 2 0

17 | quotient, decO 0

18 | one, dec1 0
9

Total T(n) =2n+5
2
Find f(n) =n

Find € = CpinsA= 2+ 1 =
Solve for ngy |T(ng)| = C|f(ng)|

9 11

|En0 + 5| = 7|n0|

5= ny
We have shown that T(n) = %n + 5 is O(n) because we have found witnesses C = % and ng =

5.

