
Computer Organization II Computing 𝑶𝑶(𝒏𝒏) Example
CMSC 3833 Project p01

 1

We apply the definition of Big-𝑂𝑂 to MARIE programs. Please review the definition of Big-𝑂𝑂
below.

Big-𝑂𝑂 Notation

DEFINITION 1

Let 𝑇𝑇 and 𝑓𝑓 be functions from the set of integers or the set of real numbers to
the set of real numbers. We say that 𝑇𝑇(𝑛𝑛) is 𝑂𝑂(𝑓𝑓(𝑛𝑛)) if there are positive
constants 𝑛𝑛0 and 𝐶𝐶 such that

|𝑇𝑇(𝑛𝑛)| ≤ 𝐶𝐶|𝑓𝑓(𝑛𝑛)|
whenever

𝑛𝑛 > 𝑛𝑛0
[This is read as “𝑇𝑇(𝑛𝑛) is big-oh of 𝑓𝑓(𝑛𝑛).”]

• The constants C and 𝑛𝑛0 in the definition of big-O notation are called witnesses to the

relationship 𝑇𝑇(𝑛𝑛) is 𝑂𝑂�𝑓𝑓(𝑛𝑛)�.
• There are infinitely many witnesses to the relationship 𝑇𝑇(𝑛𝑛) is 𝑂𝑂�𝑓𝑓(𝑛𝑛)�.

Finding 𝐶𝐶, 𝑛𝑛0, and 𝑓𝑓(𝑛𝑛) for 𝑇𝑇(𝑛𝑛)
Steps: Assume 𝑻𝑻(𝒏𝒏) = 𝟑𝟑

𝟐𝟐
𝒏𝒏𝟐𝟐 + 𝟓𝟓

𝟐𝟐
𝒏𝒏 + 𝟏𝟏𝟏𝟏

1. Find 𝑓𝑓(𝑛𝑛). Let 𝑓𝑓(𝑛𝑛) be the fastest growing term in 𝑇𝑇(𝑛𝑛) with its coefficient removed.
𝒇𝒇(𝒏𝒏) = 𝒏𝒏𝟐𝟐

2. Find 𝐶𝐶.
2.1. 𝐶𝐶 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + ∆, where ∆= 1 (in many cases).

2.2. 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = lim
𝑛𝑛→∞

𝑇𝑇(𝑛𝑛)
𝑓𝑓(𝑛𝑛)

= lim
𝑛𝑛→∞

𝟑𝟑
𝟐𝟐𝒏𝒏

𝟐𝟐+𝟓𝟓𝟐𝟐𝒏𝒏+𝟏𝟏𝟏𝟏

𝑛𝑛2
= 3

2

2.3. In practice, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the coefficient of the fastest growing term in 𝑇𝑇(𝑛𝑛).
3. 𝐶𝐶 = Δ + 3

2
= 1 + 3

2
= 5

2

4. Find 𝑛𝑛0.
4.1. Solve |𝑇𝑇(𝑛𝑛0)| ≤ 𝐶𝐶|𝑓𝑓(𝑛𝑛0)|

3
2
𝑛𝑛02 +

5
2
𝑛𝑛0 + 10 ≤

5
2
𝑛𝑛02

𝑛𝑛02 −
5
2
𝑛𝑛0 − 10 ≥ 0

𝑛𝑛0 =

⎢
⎢
⎢
⎡5
2 ∓

��5
2�

2
+ 4 ∙ 1 ∙ 10

2
⎥
⎥
⎥
⎤

,𝑛𝑛0 > 0

𝑛𝑛0 = ⌈4.65⌉,𝑛𝑛0 > 0
𝑛𝑛0 = 5

4.2. Choose an integer value for 𝑛𝑛0. Let 𝑛𝑛0 = 5.

We have shown that 𝑻𝑻(𝒏𝒏) = 𝟑𝟑
𝟐𝟐
𝒏𝒏𝟐𝟐 + 𝟓𝟓

𝟐𝟐
𝒏𝒏 + 𝟏𝟏𝟏𝟏 is 𝑶𝑶(𝒏𝒏𝟐𝟐) because we have found witnesses 𝑪𝑪 = 5

2

and 𝑛𝑛0 = 5.

Computer Organization II Computing 𝑶𝑶(𝒏𝒏) Example
CMSC 3833 Project p01

 2

Now we apply the definition to a MARIE program that divides a positive integer by two.

input
 store dividend
test, subt divisor
 skipcond 000
 jump inc
 load quotient
 output
 halt
inc, store dividend
 load quotient
 add one
 store quotient
 load dividend
 jump test
dividend, dec 0
divisor, dec 2
quotient, dec 0
one, dec 1

Each instructions executed is assigned unit (1) cost. Instructions in black are executed only once.
Instructions in blue are executed, possibly, more than once. The question is, how many times are
the instructions shown in blue executed? If we examine the code, we find that the loop adds one
to the quotient every time two is subtracted from the dividend – in effect, this code divides a
positive integer value by two. Thus, the code in blue is executed half as many times as the input
value stored in the dividend. We will call the dividend 𝑛𝑛 to be consistent with our terminology for
time complexity.

Line Code Cost
1 input 1
2 store dividend 1
3 test, subt divisor 𝑛𝑛/2
4 skipcond 000 𝑛𝑛/2
5 jump inc 𝑛𝑛/2
6 load quotient 1
7 output 1
8 halt 1
9 inc, store dividend 𝑛𝑛/2

10 load quotient 𝑛𝑛/2
11 add one 𝑛𝑛/2
12 store quotient 𝑛𝑛/2
13 load dividend 𝑛𝑛/2
14 jump test 𝑛𝑛/2

Computer Organization II Computing 𝑶𝑶(𝒏𝒏) Example
CMSC 3833 Project p01

 3

Line Code Cost
15 dividend, dec 0 0
16 divisor, dec 2 0
17 quotient, dec 0 0
18 one, dec 1 0

 Total 𝑇𝑇(𝑛𝑛) =
9
2
𝑛𝑛 + 5

1. Find 𝒇𝒇(𝒏𝒏) = 𝒏𝒏
2. Find 𝑪𝑪 = 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎+∆= 9

2
+ 1 = 11

2

3. Solve for 𝒏𝒏𝟎𝟎 |𝑻𝑻(𝒏𝒏𝟎𝟎)| = 𝑪𝑪|𝒇𝒇(𝒏𝒏𝟎𝟎)|
�𝟗𝟗
𝟐𝟐
𝒏𝒏𝟎𝟎 + 𝟓𝟓� = 11

2
|𝒏𝒏𝟎𝟎|

𝟓𝟓 = 𝒏𝒏𝟎𝟎
We have shown that 𝑻𝑻(𝒏𝒏) = 𝟗𝟗

𝟐𝟐
𝒏𝒏 + 𝟓𝟓 is 𝑶𝑶(𝒏𝒏) because we have found witnesses 𝑪𝑪 = 11

2
 and 𝑛𝑛0 =

5.

