
Data Structures Project p07
CS 3613 Pascal Scanner

 1

Project: Program 7 reads a file containing a Pascal program and produces a list of tokens in
the file. Use a perfect hash to lookup reserve words in the Pascal grammar.

Program Files: File Description
 pas.cpp File pas.cpp contains functions that process command line

arguments and direct lexical analysis.
 paslex.h File paslex.h defines the interface to functions defined in file

paslex.l.
 paslex.l File paslex.l specifies the Pascal scanner using regular

expressions intermixed with functions and other definitions. File
paslex.l is translated by the UNIX utility lex into a C source file.
The C++ compiler is invoked to translate the output of lex to a
C++ object file compatible with other C++ objects. C-functions
defined in file paslex.l employ a perfect hash.

 pashash.h File pashash.h defines class Hash. class Hash defines member
data and functions for a hash.

 pashash.cpp File pashash.cpp implements class Hash.
 makepas File makepas contains instructions for program pas. Instructions

are written for the UNIX utility make. Program pas is contained
in file pas.

Command Line: Project 7 can be invoked with zero or one or two program parameters. The first
program parameter is the input file name. The second parameter is the trace file
name. The input file contains Pascal Program source and the trace file contains a
listing of the tokens found in the input file. Sample command lines together with
corresponding actions by program pas are shown below. Boldfaced type indicates
data entered at the keyboard by the user.
$ pas
Enter the input file name: t01.pas

$ pas t01.pas

$ pas t01.pas t01.trc

Input File: The input file contains a micro program. File t00.pas is found in the class
directory, ~tt/cs3613, contains the source shown in Figure 1. Table 1 contains a
listing of the Micro tokens.

Trace File: The trace file contains a listing of the tokens found in the input file. An example of
the output is shown in Figure 2. The trace file name has the same prefix as the
input file name and the suffix .trc.

Data Structures Project p07
CS 3613 Pascal Scanner

 2

Figure 1. Input file t00.pas

LEXEME SPELLING
PROGRAM program
ID example
LPAREN (
ID input
COMMA ,
ID output
RPAREN)
SEMICOLON ;
VAR var
ID x
COMMA ,
ID y
COLON :
ID integer
SEMICOLON ;
FUNCTION function
ID gcd
LPAREN (
ID a
COMMA ,
ID b
COLON :
ID integer
RPAREN)
COLON :
ID integer
SEMICOLON ;
BEGAN begin
IF if
ID a
EQU =
ID b
THEN then
ID gcd
ASSIGN :=
ID a

Figure 2. Output file t00.trc

program example(input,output);
var x,y:integer;
function gcd(a,b:integer):integer;
begin{gcd}

if b=0then gcd:=a else gcd:=(b,a mod b)
end;{gcd}

begin{example}
read(x,y);
write(gcd(x,y))

end.

Data Structures Project p07
CS 3613 Pascal Scanner

 3

LEXEME SPELLING
ELSE else
ID gcd
ASSIGN :=
ID gcd
LPAREN (
ID b
COMMA ,
ID a
MOD mod
ID b
RPAREN)
END end
SEMICOLON ;
BEGAN begin
ID read
LPAREN (
ID x
COMMA ,
ID y
RPAREN)
SEMICOLON ;
ID write
LPAREN (
ID gcd
LPAREN (
ID x
COMMA ,
ID y
RPAREN)
RPAREN)
END end
PERIOD .

Figure 2. Output file t00.trc (continued)

Data Structures Project p07
CS 3613 Pascal Scanner

 4

Lexeme Pattern Lexeme Pattern
AND and EQU =
ARRAY array NEQ <>
BEGAN begin LES <

DIV div LEQ <=

DO do GRT >
DOWNTO downto GEQ >=
ELSE else PLUS +
END end MINUS -
FOR for STAR *
FUNCTION function SLASH /
IF if ASSIGN :=
MOD mod LPAREN (
NOT not RPAREN)
OF of LSQBRACKET [
OR or RSQBRACKET]
PROCEDURE procedure COLON :
PROGRAM program SEMICOLON ;
THEN then COMMA ,
TO to PERIOD .
VAR var RANGE ..
WHILE while
ID (letter|_)(letter|digit|_)*
INTLIT digit+
REALIT digit+\.digit+(E(+|-

)?digit+)?

REALIT digit+E(+|-)?digit+
CHRLIT \’[^’]\’
CHRLIT \’\’\’\’

Table 1. Pascal Token Specification

