
Data Structures Lecture 34
CS 3613 Tree Sort

 1

Insight: Listing the keys that result from an inorder traversal of a binary search tree will produce a sorted
list.

Algorithm:
1. Insert keys into a binary search tree.
2. Perform an inorder traversal of the binary search tree, printing the keys as each node is visited.

Time Complexity Analysis:
1. The time complexity of insertion and an inorder traversal are dependent on the height of the binary

search tree.
1.1. Insertion:

1.1.1. The time complexity of building a tree using the insertion algorithm is dependent on the
height of the tree after the last key has been inserted.

1.1.2. The height of the tree is dependent on the order in which keys are inserted. Consider the
two examples below. Let n represent the number of keys. In both examples, 7=n .

1.1.2.1. Suppose 7=n keys are inserted in the following order: nancy, gabrielle, ursula,
daphne, julia, rosemary, and yvette. The resulting tree is shown in Figure 1. Note
that the height of the tree is  n2log . The number of operations required to build

the tree is  )log(2 nnO Inserting key nancy requires)1(O operations. Inserting

gabrielle requires ()2log2O operations. Inserting ursula requires no more than

)3(log 2O operations. All insertions require no more than

)(log)7(log 22 nOO = operations. There are 7 or n insertions. The time required

to insert all keys is no more than the sum of the individual insertion or)log(2 nnO .

nancy

gabrielle ursula

daphne julia rosemary yvette

Figure 1. Binary tree for keys: nancy, gabrielle, ursula, daphne, julia, rosemary, and yvette.
1.1.2.2. Suppose 7=n keys are inserted in the following order: daphne, gabrielle, julia,

nancy, rosemary, ursula, and yvette . The resulting tree is shown in Figure 2. Note
that the height of the tree is 61)(=−= nnh and the number of operations required

to build the tree is)(nO .

Data Structures Lecture 34
CS 3613 Tree Sort

 2

daphne

julia

rosemary

gabrielle

nancy

ursula

yvette
Figure 2. Binary tree for keys: daphne, gabrielle, julia, nancy, rosemary, ursula, and yvette

In the worst case, each insertion requires)(nO operations. The sum of the time required for

individual insertions is)(2nO .Neither the best-case time complexity)log(2 nnO nor the

worst-case time complexity ()2nO will adequately characterize the time complexity of the tree
sort algorithm.

What we want to know is the height of an average tree. For 7=n keys we will have to find the
average height of the number of trees that can be created from seven keys. We will have to find
the average height of all the permutations of seven keys. !),(nnnP =

In the average case, on a randomly ordered list of length n, treesort performs

)(log39.1)(ln2 2 nOnnnOnn +≈+
comparisons of keys.1

1.2. Inorder Traversal
1.2.1. An inorder traversal is accomplished by visiting every node in the tree. Function inorder

will be called 12 +n times where n is the number of nodes in the tree if inorder is
implemented as a recursive function. The time complexity of an inorder traversal is).(nO

1 Kruse and Ryba Data Structures and Program Design in C++, Prentice-Hall, 1999 ISBN 0-13-768995-0,
p 454

